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Abstract—In this paper, we consider spectral clustering over
data collected by a network of sensors. In this context, the spatial
data distribution is not necessarily uniform and can further
be affected by sensor noise. This is why we propose a new
similarity measure for spectral clustering in sensor networks.
This similarity function is derived as the p-value of an hypothesis
test that has to decide whether two sensor measurements belong
to the same cluster. Unlike other existing similarity measures,
the p-value takes into account both the local data densities and
the fact that the noise variance can vary from sensor to sensor.
Simulation results show that the p-value leads to a better spectral
clustering performance than the standard Gaussian kernel when
there is some noise in the collected data.

I. INTRODUCTION

Learning over data collected by a network of sensors is now
an important issue in a wide range of applications such as
event detection, target localization, or object tracking, see [1]
for a review. In this context, clustering is an unsupervised
learning task that consists of separating the collected measure-
ments into clusters: measurements assigned to the same cluster
are similar while measurements assigned to two different
clusters are dissimilar. As an alternative to standard clustering
algorithms such as K-means or Expectation-Minimization
(EM), Spectral clustering [2] permits to separate the data into
clusters that cannot be described by convex boundaries (see
Figure 1 for an example).

Spectral clustering consists of two steps. It first maps the set
of collected measurements into a similarity graph by comput-
ing all the similarities between every pair of measurements.
It then applies the spectral clustering algorithm that partitions
the similarity graph into subgraphs in order to constitute the
clusters. A key aspect in spectral clustering resides in the
choice of the similarity function that is used to build the
similarity graph.

The most standard similarity function is the Gaussian
kernel [3], although other similarity functions have been
proposed [4]–[7]. The Gaussian kernel expression depends on
a parameter that was shown to be homogeneous to the local
density of data. This parameter can be estimated for every
measurement by calculating the average distance between
the measurement and its M nearest neighbors [3]. The local
densities are supposed to capture the distribution of the data
in the space. But in sensor networks, the data distribution can
further be affected by the sensor noise, and the noise variance

may vary from one sensor to another. As a result, the standard
Gaussian kernel is not sufficient to completely characterize
the similarity between measurements. To the best of our
knowledge, the other existing similarity measures cannot take
into account at the same time the local data density, the noise
variance, and the fact that the noise variance can vary from
sensor to sensor.

This paper proposes a new similarity function for spectral
clustering. The proposed similarity function is derived as the
p-value of a hypothesis test called Random Distortion Testing
(RDT) [8]. The p-value measures the plausibility that two
measurement vectors belong to the same cluster. It permits to
take into account both the local data densities and the noise
variances, even when each sensor has a different variance.
The local data densities can be estimated as in [3]. The
noise variance of a given sensor is either known from the
sensor physical characteristics, or can locally be estimated
via signal processing techniques [9], [10]. Simulation results
show that the p-value yields better clustering performance than
the Gaussian kernel when there is some noise in the collected
data.

This paper is organized as follows. Section II introduces
the statistical signal model for the sensors measurements.
Section III describes the standard spectral clustering approach.
Section IV derives our new similarity function as the p-value
of a RDT test. Section V shows the simulation results.

II. SIGNAL MODEL

This section describes the notations and assumptions that
will be used throughout the paper for data collection in a
network of sensors. Consider a network of N sensors, where
sensor i ∈ {1, · · · , N} observes a random d-dimensional
measurement vector Yi. Denote by Y = {Y1, · · · ,YN} the
set of N measurement vectors. For every Yi ∈ Y , we assume
a Gaussian observation model Yi = θi+Zi, where θi ∈ Rd is
unknown but deterministic and Zi ∼ N (0, σ2

i Id) is a random
vector that has independent and identically distributed (i.i.d.)
components with mean 0 and variance σ2

i . The deterministic
vector θi represents the unknown original data and the random
vector Zi describes the sensor noise. Note that here, the
statistical model is not on the original data θi but only on
the measurement noise Zi from the sensors. We consider a
standard Gaussian model for the noise, although the proposed
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method can be extended to other observation and noise
models.

III. SPECTRAL CLUSTERING

The objective of spectral clustering is to separate the set
Y into K clusters. In spectral clustering [2], the value of K
is usually assumed known. Although this assumption is not
always easy to verify in practical situations, we do it here
in order to focus on the effect of the similarity function on
the clustering performance. In the following, we consider a
similarity function w : Rd × Rd → R, and we denote by
wi,j = w(Yi,Yj) the similarity measure between each pair
of vectors (Yi,Yj) ∈ Y2. The function w is positive and it is
assumed symmetric in the sense that w(Yi,Yj) = w(Yj ,Yi).

In this section, we describe standard spectral clustering
from a generic similarity function w [2]. From the subsequent
measures wi,j , one can construct a similarity graph over the
dataset Y . Spectral clustering then determines the K clusters
by partitioning the similarity graph into K subgraphs. In the
following, we first describe the construction of the similarity
graph from the dataset. We then present the spectral clustering
algorithm that permits to partition the graph into K subgraphs.

A. Similarity Graph

The set of measurement vectors Y can be mapped into an
undirected weighted graph G = (V,E) called the similarity
graph. In G, the set V is composed by N vertices, and vertex
vi ∈ V represents the measurement vector Yi. There is an
edge ei,j ∈ E (i 6= j) between two vertices vi and vj as
long as wi,j > 0. Edge ei,j ∈ E is weighted by the similarity
measure wi,j . Also denote by Ni the index set of vertices that
are connected to vi.

From the similarity graph G, the problem of clustering
the dataset Y can be reformulated as a graph partitioning
problem. The objective of graph partitioning is to separate
G into K subgraphs such that edges within a subgraph have
high weights whereas edges between two subgraphs have
low weights. The Spectral Clustering algorithm provides a
relaxed solution to the above graph partitioning problem. This
algorithm relies on the so-called Laplacian matrix which we
now define.

B. Laplacian Matrix

The Laplacian matrix L is defined as [2]

L = D −W. (1)

In the above expression, the similarity matrix W is a square
matrix of size N ×N . The matrix W contains the similarity
measures wi,j at positions (i, j), i 6= j, and its diagonal terms
wi,i are set to 0. Note that W is the matrix representation of
the similarity graph G. The degree matrix D = diag(di) is
a diagonal matrix of size N × N . The diagonal component

di =
∑
j∈Ni wi,j contains the sums of the input weights for

vertex vi.
It can be shown that the Laplacian matrix L always admits

0 as eigenvalue. The multiplicity of the eigenvalue 0 is equal
to the number of independent connected components in the
graph. By independent connected component, we mean a
subgraph G′ ⊆ G, such that there is a path between any pair of
vertices G′ but there is no edge between any pair of vertices
in G′×(G\G′). The kernel E0 of L is further generated by the
indicator vectors of these independent connected components.
The spectral clustering algorithm provides a partition of G into
K disjoint subgraphs that are close to independent connected
components in the sense that two different subgraphs have a
limited amount of connections between each other.

C. Spectral Clustering algorithm

For a fixed value K, the spectral clustering algorithm [2]
proceeds as follows. As a first step, it finds the first K
eigenvectors (u1, · · · ,uK) of the Laplacian matrix L. It then
constructs a matrix U of size N × K that contains the
eigenvectors (u1, · · · ,uK) as columns. As a second step, it
extracts the N rows (r1, · · · , rN ) of U and applies the K-
means algorithm over this set of rows in order to obtain K
classes A1, · · · ,AK . These K classes provide a clustering of
the set of data Y .

This algorithm has shown good performance in various
applications [4], [11]–[13]. The performance of the algorithm
however depends on the choice of the similarity function
w that computes the similarity measures wi,j between each
pair of data (Yi,Yj). We now describe the standard Gaussian
kernel [4] as well as the new similarity function we propose
for spectral clustering in sensor networks.

IV. SIMILARITY FUNCTIONS

In this section, we first describe the standard Gaussian
kernel. We then introduce a new similarity function that is
defined as the p-value of a RDT test. Unlike the Gaussian
kernel, the p-value takes both the local data densities and the
sensor noise variances into account.

A. Gaussian Kernel

For any pair (Yi,Yj) of measurements, the Gaussian kernel
is defined as [4]

wG(Yi,Yj) = exp

(
−‖Yi − Yj‖

2

βiβj
.

)
(2)

For every measurement vector Yi ∈ Y , the local parameter
βi represents the density of observations in the neighborhood
of Yi. The parameter βi > 0 can be estimated as the
average Euclidian distance between Yi and its M nearest
neighbors [3].

Apart from the Gaussian kernel, several other similarity
functions have been proposed in the literature, see [5] for an
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overview. For instance, in [6], an extension of the Gaussian
kernel was proposed to take both the local density and the
measurement noise into account. This similarity function
however assumes that all the sensors have the same noise
variance, which is not always true in practical situations. This
is why we now introduce our new similarity function which
we derive as the p-value of a hypothesis test.

B. The Random Distortion Test

Our new similarity function is defined from a RDT hypoth-
esis test [14]. In this section, we describe the general RDT
test. In Section IV-C, we specify this test in the context of
clustering, and derive the corresponding similarity function.
Fix a parameter τ ∈ [0,∞) and consider the following testing
problem  Observation:Y ∼ N (θ, σ2Id),

Hypotheses:
{
H0 : ‖θ‖ ≤ τ,
H1 : ‖θ‖ ≥ τ.

(3)

The null hypothesis H0 corresponds to the case where the
norm of the unknown deterministic θ is less than τ . The
meaning of the parameter τ will be specified later in the
paper, in connection with the clustering problem. Although
θ is unknown, problem (3) can be solved via the following
hypothesis test applied to Y .

A test T is any measurable map from Rd to {0, 1}. Given
y ∈ Rd, the value T(y) returned by T is the index of the
hypothesis considered to be true and we say that T accepts
H0 (resp. H1) at y if T(y) = 0 (resp. T(y) = 1). Given
α ∈ (0, 1), let λα(τ) be the unique real value λ such that
Qd/2(τ, λ) = α, where Qd/2 is the Generalized Marcum
Function [15]. According to [14], the test defined for any
y ∈ Rd as

Tσλα(τ/σ)(y) =

{
0 if ‖y‖ 6 σλα(τ/σ)
1 if ‖y‖ > σλα(τ/σ).

(4)

guarantees a false alarm probability α. This test is called the
RDT and it is shown to be optimal with respect to several
criteria, see Appendix A and [14] for more details.

The p-value of a hypothesis test “gives an idea of how
strongly the data contradict the hypothesis” [16, Sec. 3.3]
and can be seen as a measure of the plausibility of the null
hypothesis H0 given the observation.

Proposition 1. The p-value of the test Tσλα(τ/σ) is given for
any y ∈ Rd by

w(y) = Qd/2

(
τ

σ
,
‖y‖
σ

)
. (5)

Proof: The proof is given in Appendix A.

We now restate the RDT test in the particular context of
clustering, and derive our new similarity function as the p-
value of this particular test.

C. The p-value as a Similarity Function

For a parameter τi,j ∈ [0,∞), consider the following testing
problem

Observation: (Yi − Yj) ∼ N (θi − θj , (σ2
i + σ2

j )Id),

Hypotheses:
{
H0 : ‖θi − θj‖ ≤ τi,j ,
H1 : ‖θi − θj‖ ≥ τi,j .

(6)
The RDT test for this problem is given by Tσi,jλα(τi,j/σi,j)
defined from (4) and applied to (Yi − Yj). For any pair
(Yi,Yj), we define our new similarity function wP as the p-
value of this test. By setting σi,j =

√
σ2
i + σ2

j and according
to Proposition 1,

wP (Yi,Yj) = Qd/2

(
τi,j
σi,j

,
‖Yi − Yj‖

σi,j

)
. (7)

In the above expressions, τi,j is a design parameter that
we choose as follows. We set τi,j = min(τi, τj) and the
parameter τi (resp. τj) is estimated exactly as βi (resp. βj)
in (2), that is as the average Euclidian distance between Yi
(resp. Yj) and its M nearest neighbors. The parameter τi is
thus an estimate of the radius of the local neighborhood of
θi. In more details, every θj within the ball of radius τi and
centered in θi is considered to be in the same cluster as θi. We
set τi,j as the minimum value between τi and τj in order to:
1) have a symmetric condition between Yi and Yj , 2) consider
the most stringent radius between Yi and Yj , 3) penalize a
high difference of local neighborhood between Yi and Yj .

In order to show the interest of our new similarity function,
we now present simulation results that evaluate spectral clus-
tering applied with either the Gaussian kernel or the p-value.

V. SIMULATION RESULTS

In order to evaluate the performance of the spectral clus-
tering algorithm with the two similarity functions described
in Section IV, we consider the set of 211 data represented
in Figure 1. In this Figure, we observe that each cluster
has a different data density. Here, we consider two setups
for the collected sensor measurements. In the first setup, we
assume that the sensors directly collect the data θi without any
observation noise. In the second setup, each sensor collects a
noisy version yi of θi. In this setup, we assume that 160
sensors have variance σ2 = 0.1, 16 sensors have variance
σ2 = 0.2, and 35 sensors have variance σ2 = 0.7. The noise
variance is chosen randomly for each sensor according to the
above distribution.

In order to apply spectral clustering, we assume that the
value of σ2

i is perfectly known for each sensor, and we
estimate the values of τi with M = 2. We also set K = 8.
Figures 1 (a) (b) show the results of Spectral Clustering
with the Gaussian kernel over the two considered setups, and
Figures 1 (c) (d) show the results with the p-value. In the
noiseless setup, the two similarity functions correctly recover
all the clusters. On the opposite, in the noisy setup, we observe
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Gaussian Kernel (noiseless obs.)

(a)

Gaussian Kernel (noisy obs.)

(b)

P-value (noiseless obs.)

(c)

P-value (noisy obs.)

(d)

Fig. 1. Spectral clustering over the set of 211 data applied over noiseless and noisy observation for the Gaussian kernel and the p-value

that the Gaussian kernel sometimes fails at retrieving the
correct clusters. For example, the ”E” was separated into two
clusters when using the Gaussian kernel. Over this dataset,
the p-value can hence lead to a better clustering performance
when there is some noise in the collected data.

VI. CONCLUSION

In this paper, we proposed a new similarity measure for
spectral clustering in sensor networks. Our new similarity
measure was derived as the p-value of a RDT hypothesis test.
The p-value takes into account both the local data density and
the fact that each sensor has a different noise variance. In this
case, the proposed similarity function shows better clustering
performance than the standard Gaussian kernel.

In this paper, the p-value is obtained from a Gaussian
model for the sensor noise, but the proposed method can be
extended to other observation models (Gaussian with non i.i.d.
components, Laplacian, etc.).

APPENDIX A
P-VALUE OF TEST Tσλα(τ/σ)

In this section, we recall some basic properties of the test
Tσλα(τ/σ) before deriving its p-value and thus establishing
Proposition 1. Consider the problem of testing the null hy-
pothesis H0 : ‖θ‖ 6 τ against the alternative hypothesis
H1 : ‖θ‖ > τ , when the observation is Y ∼ N (θ, σ2Id),
θ ∈ Rd is unknown and τ ∈ [0,∞) is given.

For this problem, the power function βT of a given test
T : Rd → {0, 1} assigns to each θ ∈ Rd the probability
value [16]:

βT(θ) = P
[
T(Y ) = 1

]
, (8)

and the size of this same test is

αT = sup
θ∈Rd:‖θ‖6τ

βT(θ). (9)

Given some level α ∈ (0, 1), there is no Uniformly Most
Powerful (UMP) test for the binary hypothesis testing problem
specified by H0 and H1 [16]. It is thus natural to seek a
test optimal within a restricted class of tests relevant for the
problem. In this respect, we note that the testing of H0 against
H1 is invariant [16, Chapter 6] under the action of the group
Od of all orthogonal matrices [14, Sec. 3]. According to

[14, Theorem 2], the test Tσλα(τ/σ) defined by (4) is UMP
with size α among all Od-invariant tests and among all tests
with constant power function on every sphere centered at
the origin of Rd with radius ρ > 0. This result generalizes
[17, Proposition III, p. 450] on the testing of the mean of a
Gaussian, which corresponds to the specific case τ = 0.

Given α ∈ (0, 1), the critical or rejection region Sα of
Tσλα(τ/σ) is

Sα = {y ∈ Rd : Tσλα(τ/σ)(y) = 1}

= {y ∈ Rd : ‖y‖ > σλα(τ/σ)}

The critical regions Sα are nested in the sense that α < α′ ⇒
Sα ⊂ Sα′ . This is a consequence of the following lemma.

Lemma 1. Given τ ∈ [ 0 , ∞ ), the map α ∈ ( 0 , 1 ] 7→
λα(τ) ∈ [ 0 ,∞ ) is strictly decreasing.

Proof: Given ρ ∈ [0,∞) and α, α′ ∈ (0, 1], we have
Qd/2(ρ, λα(ρ)) = α and Qd/2(ρ, λα′(ρ)) = α′. If α < α′

then Qd/2(ρ, λα(ρ)) < Qd/2(ρ, λα′(ρ)), since Qd/2(τ/σ, ·)
is strictly decreasing [15]. We thus have λα(ρ) > λα′(ρ) .

Therefore, given any x ∈ Rd, we can define the p-value
[16, Sec. 3.3, p. 63] of the family {Tσλα(τ/σ)}α∈(0,1) of tests
as the quantity

p̂(y) = inf{α ∈ (0, 1) : x ∈ Sα}

= inf{α ∈ (0, 1) : ‖y‖ > σλα(τ/σ)}.
(10)

We now prove that

p̂ = Qd/2(τ/σ, ‖y‖/σ). (11)

To this end, set α∗ = Qd/2(τ/σ, ‖y‖/σ). By definition
of λα∗(τ/σ), we have α∗ = Qd/2(τ/σ, λα∗(τ/σ)). The
bijectivity of Qd/2(τ/σ, ·) implies that ‖y‖ = σλα∗(τ/σ).
It then follows from (10) that p̂(y) = inf{α ∈ (0, 1) :
λα∗(τ/σ) > λα(τ/σ)}. We then derive (11) from Lemma
1.
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