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Abstract—In this paper, we analyze Finite Alphabet
Iterative Decoders (FAIDs) running on faulty hardware.
Under symmetric error models at the message level, we derive
the noisy Density Evolution equations, and introduce a new
noisy threshold phenomenon (called functional threshold),
which accurately characterizes the convergence behavior
of LDPC code ensembles under noisy-FAID decoding. The
proposed functional threshold is then used to identify FAIDs
which are particularly robust to the transient hardware noise.
Finite-length simulations are drawn to verify the validity of
the asymptotical study.

I. INTRODUCTION

Nowadays, reliability is becoming a major issue in the
design of electronic devices. On one hand, a huge increase
in the integration factors coupled with important reduction
of the chip sizes makes electronic devices much more
sensitive to noise and may induce transient errors on
operations performed by the circuit. On the other hand,
the involved delicate fabrication process make electronic
components more prone to defects and may also cause
permanent errors in the computation. As a consequence,
in the context of communication and storage, errors may
not only come from the transmission channels, but also
from the faulty hardware.

The problem of error correction performed on faulty
hardware was early addressed by Taylor [9] and
Kuznetsov [2] who were the first to analyze the correction
capability of Low Density Parity Check (LDPC) decoders
made of unreliable components. More recently, the
performance of noisy hard-decision Gallager-B decoders
was investigated, both for binary [11] and non-binary [7]
alphabets. Furthermore, [10] introduced a framework for
the performance analysis of noisy LDPC decoders in
terms of asymptotic error probability referred to as noisy
Density Evolution (noisy-DE), and considered the case
of Gallager-A and infinite-precision Belief Propagation
decoders. From the same noisy-DE framework, [3]
proposed an analysis of the behavior of discrete min-sum
decoders, for which the exchanged messages are no longer
binary but are quantized soft information stored in a finite
(and typically small) number of bits. Except [1] which
deals with both transient and permanent errors, most of
these works consider only transient errors, as we will do
in this paper.

Recently, a new class of LDPC decoders referred to
as Finite Alphabet Iterative Decoders (FAIDs) has been
introduced [8]. In these decoders, the messages take

their values in small alphabets and the variable node
update is derived through a predefined mapping that has
to satisfy some particular properties. For decoding on
faulty hardware, the FAID framework offers the possibility
to define a large collection of these mappings, each
corresponding to a particular decoding algorithm, with
potentially different behaviors in terms of tolerance to
transient errors. In this paper, we propose a method for the
selection of decoders robust to transient errors introduced
by the faulty hardware. This selection procedure is based
on an asymptotic performance analysis of noisy-FAIDs
realized with noisy-DE. In particular, we introduce a
noisy-DE threshold definition different from the useful
threshold defined in [10]. This definition characterizes
more accurately the convergence behavior of LDPC code
ensembles under noisy-FAIDs decoding.

The remainder of the paper is organized as follows.
The FAID framework is first described, and we show how
it enables to define a large collection of decoders with
different properties. Then, the error models considered
for the faulty hardware are introduced. Next, the noisy-
DE equations are derived and, from these equations, we
introduce the threshold definition and explain how to
analyze the asymptotic performance of the decoders. In
a final part of the paper, we propose a noisy-DE based
framework to identify, within the diversity of a large
number of FAIDs, the decoders that are naturally more
robust to errors introduced by the hardware. Finite-length
simulation results illustrate the gain in performance at
considering robust FAIDs on faulty hardware.

II. FINITE ALPHABET ITERATIVE DECODERS
RUNNING ON FAULTY HARDWARE

In the following, we assume that the transmission
channel is a Binary Symmetric Channel (BSC) with
parameter α.

A. FAID Update Rules

An Ns-level FAID is defined as a 4-tuple given by
D = (M,Y,Φv,Φc). The message alphabet is finite and
can be defined as M = {−Ls, . . . ,−L1, 0, L1, . . . , Ls},
where Li ∈ R+ and Li > Lj for any i > j. It thus
consists of Ns = 2s + 1 levels to which the message
values belong. For the BSC, the set Y , which denotes the
set of possible channel values, is defined as Y = {±B},
where B ∈ {−Ls, . . . , Ls}. For the n-th symbol of the



codeword, the channel value yn ∈ Y corresponding to
node vn is determined based on its received value. Here,
we use the mapping 0→ B and 1→ −B. In the following,
µ1, . . . , µdc−1 denote the extrinsic incoming messages to
a Check Node (CN) of degree dc and let η1, . . . , ηdv−1 be
the extrinsic incoming messages to a Variable Node (VN)
of degree dv .

At each iteration of the iterative decoding process,
the following operations defined in [8] are performed on
the messages. The Check Node Update (CNU) function
Φc : Mdc−1 → M used for the update at a Check
Node (CN) of degree dc is given by Φc(µ1, . . . , µdc−1)
and corresponds to the CNU of the standard min-sum
decoding. The Variable Node Update (VNU) function
Φv :Mdv−1 ×Y →M used for the update at a Variable
Node (VN) vn, n = 0 . . . N − 1 of degree dv , is given by
Φv(η1, · · · , ηdv−1, yn). The properties that Φv must verify
are given in [8]. To finish, at the end of each decoding
iteration, the A Posteriori (APP) computation produces
messages γ calculated from the function Φa :Mdv×Y →
M̄, where M̄ = {−Ls′ , . . . , Ls′} and s′ = 2s + 1. The
function Φa is expressed as

Φa(η1, . . . , ηdv , yn) =

dv∑
j=1

ηj + yn . (1)

It is computed on a bigger alphabet M̄ in order to limit the
influence of saturation effects when calculating the sum.
The hard-decision bit corresponding to each variable node
vn is given by the sign of the APP computation. If the
output of Φa is 0, then the hard-decision bit is selected at
random and takes value 0 with probability 1/2.

The VNU Φv can also be represented as a Look-Up
Table (LUT) that is defined for a specific channel value.
Table I shows an example of LUT for a 7-level FAID and
column-weight three codes when the channel value is −B.
The corresponding LUT for the value +B can be deduced
by symmetry. In fact, the VNU formulation defines a large
collection of mappings with common characteristics but
potentially different abilities to be robust to noise in the
decoder. That is why, after introducing the considered
errors models for the faulty hardware, we propose a
method to analyze the asymptotic performance of noisy-
FAIDs. From this method, we will be able to compare
the performance of the decoder for different choices of
Φv and thus to identify the VNU that are robust to faulty
hardware.

Table I: LUT Φ(opt)
v reported in [8] optimized for the error floor

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L3 −L1

−L2 −L3 −L3 −L3 −L3 −L2 −L1 L1

−L1 −L3 −L3 −L2 −L2 −L1 −L1 L1

0 −L3 −L3 −L2 −L1 0 0 L1

L1 −L3 −L2 −L1 0 0 L1 L2

L2 −L3 −L1 −L1 0 L1 L1 L3

L3 −L1 L1 L1 L1 L2 L3 L3

Noise 

effect
...

Fig. 1: Function decomposition for the CNU

B. Error Models for the Faulty Hardware

In a first step of our analysis of the faulty hardware, we
assume that the noise is introduced at a message level and
appears only at the output of the function computation.
More precisely, we assume that the noisy function can
be decomposed as a noiseless function followed by the
noise effect (see Figure 1 for the case of the CNU). As a
consequence, η and µ represent the messages at the output
of the noiseless CNU Φc and VNU Φv respectively, and
their noisy versions are denoted η̃, µ̃. The noise effect
for the messages at the output of Φc can be described
by a probability transition matrix Mc such that ∀k,m ∈
{−Ls, . . . , Ls},

prob(η̃ = m|η = k) = Mc(k,m). (2)

Note that, here, with an abuse of notation, the
coefficients of the matrix are indexed with the values
−Ls, . . . , 0, . . . ,+Ls. This convention will be used for
all the vectors and matrices introduced in the remaining
of the paper.

In this paper, we consider noise models with a Sign-
Preserving (SP) property. By doing this, we in fact assume
that the noise is only on the amplitude on the messages,
and not on their sign. Such a model allows to study
the robustness of the decoders to errors on the reliability
of the estimated value associated to each VN, and not
on the estimated value itself. However, it assumes extra-
protection at the hardware level in computing the sign. Mc

is defined as

Mc =
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where 0 ≤ pc ≤ 1. The probability transition matrix

for the noise effect at the output of the VNU computation
is denoted Mv and is given by replacing pc by pv . The
resulting noisy messages µ̃, η̃ are then the inputs of the
message updates Φc, Φv , Φa. The noise effect at the end of
the APP computation (1) is represented by the probability
transition matrix Ma obtained from Mv by adapting the
size of the matrix to the alphabet M̄ and replacing s by
s′. The parameter pv is used for the APP computation
because this operation is usually performed at the VN part
of the decoding.

As in the following the performance analysis is realized
with noisy-DE, only symmetric models [10] are considered
so that the simplifying all-zero codeword assumption can
be performed. Furthermore, the noise is assumed to be
only at the output of the noiseless functions. A perhaps
more relevant model could be to consider some noise



effect introduced inside the functions, for example during
elementary operations such as the minimum computation
between two elements in Φc, as in [3]. However, although
the models introduced here may not capture all the noise
effects, they enable to analyze the behavior and robustness
of noisy decoders without having to consider a particular
and fixed hardware implementation. More accurate faulty
hardware models will be considered in future works.

III. DENSITY EVOLUTION OF NOISY MESSAGE
PASSING DECODING

This section presents the noisy-DE framework for the
asymptotic analysis of FAIDs on faulty hardware. DE [10]
consists of expressing the probability mass function (pmf)
of the messages at successive iterations under the local
independence assumption, that is the assumption that the
messages arriving at a node are independent. The DE
analysis enables to characterize the asymptotic behavior
of the decoding algorithm under particular decoder noise
conditions for a given VNU Φv and is valid on average
over all possible LDPC code constructions, when infinite
length LDPC graphs are considered. Note that here, not
only the considered channel model, but also the noiseless
functions and the decoding noise models are symmetric in
the sense of [10]. Thus the final error probability of the
decoder does not depend on the transmitted codeword.

In the following, we first give the expression of the pmf
of the messages at successive iterations and then explain
how they can be used to characterize the asymptotic
behavior of the decoders. Note that the presented analysis
holds for regular LDPC codes. However, the following
expressions can be easily generalized to the case of
irregular codes.

A. Noisy Density Evolution Recursion

Denote q0 the pmf in vector form of the initial
messages. The k-th component q0(k) of q0 is the
probability that the initial message takes value k ∈
{−Ls, . . . , Ls}. Correspondingly, denote q(`), r(`) the
vector forms of the pmfs of the messages at the outputs of
the VNU and the CNU at iteration `. Their noisy versions
are denoted q̃(`) and r̃(`), respectively.

The density evolution is initialized with the pmf of the
channel value, that is

q0(−B) = 1−α q0(+B) = α q0(k) = 0 elsewhere.

The pmf r(`) of the output of the CNU is obtained from
the expression of Φc as

r(`)(ηdv ) =
∑

(µ1,...,µdc−1):

Φc(µ1,...,µdc−1)=ηdv

dc−1∏
i=1

q̃(`−1)(µi) (3)

The noisy pmf is then obtained directly in vector form as

r̃(`) = Mcr
(`). (4)

We proceed the same way to obtain the DE equations for
the VNU and we get

q(`)(µdc) =
∑

(η1,...,ηdv−1):

Φv(η1,...,ηdv−1,−B)=µdc

q0(−B)

dv−1∏
i=1

r̃(`)(ηi)

+
∑

(η1,...,ηdv−1):

Φv(η1,...,ηdv−1,+B)=µdc

q0(+B)

dv−1∏
i=1

r̃(`)(ηi)

(5)

and
q̃(`) = Mvq

(`). (6)

Finally, applying recursively the sequence of 4 equations
(3), (4), (5) and (6) implements one recursion of the Noisy
Density Evolution for FAIDs over the BSC channel. Note
that, to avoid complexity explosion when the VN and CN
degrees increase, (3) and (5) can be computed recursively
on the inputs, as in [4].

From the recursion, we now want to determine the error
probability of the decoder. This can be obtained from the
pmf of the APP computation. Denote q

(`)
app and q̃

(`)
app the

respective noiseless and noisy pmfs of the messages at
the output of the APP computation. They can be expressed
from (1) as

q(`)
app (γ) =

∑
(η1,...,ηdv ):

Φa(η1,...,ηdv ,−B)=γ

q0(−B)

dv∏
i=1

r̃(`)(ηi)

+
∑

(η1,...,ηdv ):

Φa(η1,...,ηdv ,+B)=γ

q0(+B)

dv∏
i=1

r̃(`)(ηi) (7)

and
q̃(`)

app = Maq
(`)
app. (8)

Finally, the error probability at each iteration can be
computed under the all-zero codeword assumption as

P̃ (`)
e (α, pv, pc,Φv) =

1

2
q̃(`)

app(0) +
∑
γ<0

q̃(`)
app(γ). (9)

It thus suffices to study the asymptotic error probability for
a given Φv , that is the limit of P̃ (`)

e (α, pv, pc,Φv) when
` goes to infinity, to characterize the asymptotic behavior
of the noisy decoder.

Denote P
(`)
e (α, pv, pc,Φv) the error probability

assuming that the APP computation is error free, and
denote P

(lb)
e (pv) = 1

2s′ pv . We show that the following
inequalities hold.
Proposition 1. For the SP error model, the two following
inequalities hold at every iteration `

1) P̃
(`)
e (α, pv, pc,Φv) ≥ P (lb)

e (pv), and
2) P̃

(`)
e (α, pv, pc,Φv) ≥ P (`)

e (α, pv, pc,Φv).
Because of the lack of space, the proofs of the

propositions are not in the paper.
The first lower bound is achieved when the error is

only on the APP computation, assuming that the VNU and
CNU computations are error-free and able to correct all
the errors from the channel. On the opposite, to obtain the
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Fig. 2: Asymptotic error probabilities and lower bound for
pv = 3 × 10−2, pc = 10−3

second inequality, we assume that the VNU and CNU can
be in error but that the APP computation is error-free. In
the following, we use the two inequalities to characterize
the convergence behavior of the decoder.

B. Analysis of Convergence Behaviors

For noiseless decoders, the maximum channel parameter
α such that lim`→+∞ P

(`)
e (α, 0, 0,Φv) = 0 is called the

threshold of the code [5]. However, from Proposition 1, we
see that this condition cannot be reached for noisy-FAIDs.
As a consequence, there is a need to introduce another
threshold definition that identifies the channel parameters
for which the decoder can correct the maximum possible
number of errors from the channel.

For noisy-DE, the author in [10] defines the
useful threshold for given decoding noise conditions
(pv, pc) as the maximum parameter α such that
lim`→+∞ P̃

(`)
e (α, pv, pc,Φv) ≤ α. The useful threshold

indicates what are the faulty hardware conditions and the
maximum channel noise that a noisy decoder can tolerate
to reduce the level of noise. In this paper, we introduce
another threshold definition, which relies on more stringent
convergence conditions of the noisy DE recursion. The
threshold, that we call functional threshold, is defined as
follows.
Definition 1. For fixed values pv, pc, and a given FAID
Φv , the functional threshold α(pv, pc,Φv) is defined as

α(pv, pc,Φv) = arg max
α

{
lim

`→+∞
P (`)
e (α, pv, pc,Φv) exists

and lim
`→+∞

P (`)
e (α, pv, pc,Φv) ≤ P (lb)

e (pv)

}
.

The existence condition is required because from [3]
the error probability sometimes does not converge for
some particular decoders and noise conditions. We define
the functional threshold as the value of α for which
lim`→+∞ P

(`)
e (α, pv, pc,Φv) crosses the lower bound

P
(lb)
e (pv) (see Figure 2). The useful threshold cannot

predict well the asymptotic behavior of the decoders in
the sense that it cannot identify the channel parameters
leading to an asymptotic performance close to the lower
bound P

(lb)
e (pv). In addition, using only P

(lb)
e (pv) as a

reference to define the threshold is not sufficient because,
in general, the lower bound is not achieved and the gap
between the asymptotic error probability and P

(lb)
e (pv)

slightly increases with the value of α. Our definition of
the functional threshold enables to determine the set of
parameters α for which P̃ (`)

e (α, pv, pc,Φv) is close enough
to the lower bound. Furthermore, this condition leads to
the following result.
Proposition 2. If there exists a value α? such that
lim`→+∞ P

(`)
e (α?, pv, pc,Φv) = P

(lb)
e (pv), then the

following inequality holds

2P (lb)
e (pv) − p2

v

2s2
≤ lim
`→+∞

P̃ (`)
e (α?, pv, pc,Φv) ≤ 2P (lb)

e (pv).

(10)
The term p2v

2s2 in (10) is actually small compared
to the value P

(lb)
e (pv) = pv

2s . Therefore, for the
channel parameter α for which P (`)

e (α, pv, pc,Φv) crosses
P

(lb)
e (pv), the asymptotic probability P̃

(`)
e (α, pv, pc,Φv)

gets very close to 2P
(lb)
e (pv).

From this proposition, we see that the introduced
threshold definition enables to determine the set of channel
parameters that leads to an asymptotic error probability
that is close to the lower bound. This threshold definition
gives a criterion for the prediction and the comparison
of the performance of different decoders under particular
faulty hardware conditions. The next section thus presents
the selection process of robust FAIDs based on this
criterion.

IV. SELECTION OF FAIDS ROBUST TO FAULTY
HARDWARE

In this paper, we want to capitalize on the diversity
of FAID update rules Φv and behavior to identify if there
are iterative decoders which are naturally more robust than
others under faulty hardware implementation.

From [8, Theorem 1], we know that even by restricting
the message alphabet size to Ns = 7, there are 530 803 988
different FAIDs, which is too large for a systematic
analysis. Instead, we rely on previous work on FAID,
and start with a collection of ND = 5291 FAIDs which
correspond to column-weight tree codes and have been
selected from the analysis on trapping sets presented in [8].
As a result of this selection process, all of these ND
FAIDs have both good noiseless-DE thresholds, and good
performance in the error floor. We now conduct a noisy-
DE analysis on this set of ND FAIDs by computing, for
each of them, the values of their functional threshold. As
an example, Figure 3 represents the noisy versus noiseless
thresholds obtained for all the FAIDs with pv = 0.05, pc =
0.05. We see that although the considered decoders have
all good noiseless threshold, they exhibit very different
behaviors when the decoder is noisy.

Two decoders are extracted from the set of ND FAIDs.
The first one denoted Φ(robust)

v is the decoder that minimizes
the difference between noiseless and noisy threshold. The
second one Φ(non-robust)

v is selected to maximize the difference
between noiseless and noisy threshold. The LUTs of Φ(robust)

v

and Φ(non-robust)
v selected for pv = 0.05, pc = 0.05 are given

respectively in Tables II and III.
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Table II: FAID rule Φ(robust)
v

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L2 0

−L2 −L3 −L3 −L3 −L3 −L2 −L2 L1

−L1 −L3 −L3 −L3 −L2 −L1 −L1 L1

0 −L3 −L3 −L2 −L1 −L1 0 L1

+L1 −L3 −L2 −L1 −L1 0 L1 L2

+L2 −L2 −L2 −L1 0 L1 L2 L2

+L3 0 L1 L1 L1 L2 L2 L3

V. FINITE LENGTH SIMULATIONS RESULTS

This section gives finite-length simulation results with
the noisy FAIDs that have been identified by the noisy DE
analysis. Our main purpose is to compare Φ(robust)

v , Φ(non-robust)
v ,

and Φ(opt)
v (Table I), optimized in [8] for noiseless decoding

with low error floor. The number of iterations is set to 100.
We fix pv = pc = 0.05 and compare on Figure 4 the three
defined decoders on the (155, 93) Tanner code given in [6]
with degrees (dv = 3, dc = 5).
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Fig. 4: Performance of Noiseless and Noisy FAIDs on the
(93, 155) Tanner code, with (dv = 3, dc = 5) and

(pv = 0.05, pc = 0.05).

For the noiseless curves, as Φ(opt)
v has been optimized for

low error floor, it performs better, as expected, than the
two other FAIDs. But as Φ(robust)

v and Φ(non-robust)
v belong to a

pre-determined set of good FAID decoders, they also have
reasonable performance in the noiseless case. Now, from
the noisy curves, we see that the results are in compliance

Table III: FAID rule Φ(non-robust)
v not robust to faulty Hardware

m1/m2 −L3 −L2 −L1 0 +L1 +L2 +L3

−L3 −L3 −L3 −L3 −L3 −L3 −L3 0

−L2 −L3 −L3 −L3 −L3 −L2 0 L2

−L1 −L3 −L3 −L2 −L2 −L1 0 L2

0 −L3 −L3 −L2 −L1 0 L1 L3

+L1 −L3 −L2 −L1 0 0 L1 L3

+L2 −L3 0 0 L1 L1 L1 L3

+L3 0 L2 L2 L3 L3 L3 L3

with the conclusions from the noisy functional thresholds
analysis. Indeed,when the decoder is noisy, Φ(robust)

v performs
better than Φ(opt)

v while Φ(non-robust)
v has an important loss in

performance compared to the two other decoders.

VI. CONCLUSION

In this paper, we performed an analysis of asymptotic
performance of noisy FAIDs using noisy-DE. We
introduced the functional threshold that enables to predict
the asymptotic behavior of noisy FAIDs. From this
asymptotic analysis, we were able to identify robust
FAIDs, as confirmed by the finite-length simulations.

Future works will be dedicated to the analysis of more
accurate models for the faulty hardware. In particular,
models that are not sign-preserving, not symmetric, and
that intervene at a boolean level inside the function
computation may be considered.
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