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Abstract—Lowering the power supply of a circuit can induce
transient errors in the memory cells and timing errors in
the computation units. In this paper, we consider the Taylor-
Kuznetsov (TK) memory architecture with transient errors in the
memory cells and with timing errors in the correction circuit. We
provide a theoretical analysis of the performance of TK memories
under transient errors and timing errors. Our study is based on
the analysis of the computation trees of the equivalent Gallager
B decoders with and without timing errors. As a main result,
we show that as the number of iterations goes to infinity, the
error probability of the decoder with timing errors converges
to the error probability of the decoder without timing errors.
Monte Carlo simulations confirm this result even for moderate
code lengths.

I. INTRODUCTION

Over the past decade, the size of electronic chips has consid-
erably reduced, while the integration factors have dramatically
increased. Due to this huge scale change, energy consumption
has become a major issue in the design of the next generations
of electronic devices. Typical solutions involve decreasing
the power supply of electronic chips by several orders of
magnitude and/or reducing the clock period [1]. However,
both lower power supply and clock period reduction make
electronic components much more sensitive to noise. Due to
this increased noise sensitivity, errors of different nature may
appear in the storage and computation units built on such
hardware. Lower power supply can induce transient errors that
appear from time to time in the memory cells. Reducing the
clock period makes computational units much more sensitive
to timing errors that appear when the logic gate output does
not switch before the clock rising edge [2].

In this context, Taylor [3] and Kuznetsov [4] were the
first to propose a reliable memory architecture built from
unreliable components. In the Taylor-Kuznetsov (TK) memory
architecture, the information is stored as a codeword obtained
from a Low Density Parity Check (LDPC) code. As the
hardware introduces some errors in the stored information,
the codeword is regularly extracted from the memory and
passed through a correction circuit in order to correct the
hardware errors. The memory architecture proposed in [3],
[4] was further studied in [5], [6], and references therein.
In particular, [5] showed the equivalence between the TK
memory architecture and the Gallager B decoder subject to
hardware errors. In this paper, we would like to characterize

the performance of the TK architecture by taking into account
both the transient errors that occur in the memory cells and
the timing errors that appear in the correction circuit.

In this context, several recent works were devoted to the
performance analysis of equivalent Gallager B decoders under
simple transient and permanent data-independent models to
represent hardware errors [7]–[9]. However, timing errors
cannot be represented by the transient error models considered
in [7]–[9] since they induce memory in the decoder. For
example, in the timing errors model considered in [10], the
gate output can be either the correct value, or the value from
the previous iteration if the gate output did not switch before
the clock rising edge. This model was initially proposed in [11]
and its accuracy was verified by Monte-Carlo simulations on
SPICE. In [10], [12], it was shown that Gallager B decoders
with timing errors can actually achieve the same performance
as error-free decoders. This result was demonstrated in [12]
from a theoretical analysis of the decoders performance, and it
was confirmed experimentally from Monte Carlo simulations
in [10], [12].

The Gallager B decoder analyzed in [10], [12] is equivalent
to a memory architecture with timing errors in the correction
circuit, but does not take into account transient errors that
occur in the memory cells. Consequently, in this paper, we
propose a theoretical analysis of the performance of the TK
memory architecture with transient errors in the memory cells
and with timing errors in the correction circuit according to
the model of [10].

Our analysis is based on the comparison of the computation
trees of the decoders with and without timing errors, as for
the analysis of the performance of LDPC decoders under serial
scheduling [13]. We first provide bounds on the computation
tree of the equivalent LDPC decoder under transient errors and
timing errors similar to those in [12]. From these bounds, we
show that as the number of iterations goes to infinity, the error
probability of the decoder with transient and timing errors
converges to the error probability of the decoder with transient
errors only. This result shows that timing errors do not affect
the performance of the TK memory architecture. We confirm
through Monte Carlo simulations the accuracy of the proposed
analysis and show that the asymptotic performance of the TK
memory architecture under timing errors is indeed the same
as the performance of the architecture without timing errors
even for moderate code lengths.
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The outline of the paper is as follows. Section II introduces
the TK memory architecture and the considered transient
and timing errors models. Section III provides the theoretical
analysis of the performance of the architecture under timing
errors. Section IV presents the Monte Carlo simulation results.

II. SYSTEM MODEL

In this section, we present the memory architecture and
the error model describing the memory degradation induced
by the faulty hardware. The memory architecture and the
error model were originally introduced in [3], [4] and latter
considered in [5], [6]. We explain how, as initially proposed
by [3], LDPC codes can be used to overcome the memory
degradation induced by the faulty hardware. We then describe
the correction circuit that is used in the memory architecture
and we introduce the timing errors model we consider for the
correction circuit.

A. Memory Degradation

Consider a memory with a storage capability of k bits, and
consider the discrete time instants t = 0, . . . , T . Denote by
x(0) the binary information vector of length k initially stored
in memory at time instant t = 0, and denote by x(t) the binary
information vector of length k that is in the memory at time
instant t. Let x(t)v be the v-th component of the vector x(t).
The memory degradation between two successive time instants
t and t+1 is modeled by a Binary Symmetric Channel (BSC)
of parameter α, which is denoted BSC(α). In other words,
P (x

(t)
v = 1|x(t−1)v = 0) = P (x

(t)
v = 0|x(t−1)v = 1) = α.

The BSC gives a symmetric and memoryless error model.
Although such a model may not take into account all the
errors induced by the faulty hardware in a realistic memory,
we consider it here as a first step for the analysis.

Unfortunately, because of the memory degradation, the
number of errors in x(t) with respect to x(0) increases with
t. For large enough t, x(t) will contain too many errors, and
it will not be possible to recover the initial x(0) from x(t)

anymore. In order to overcome this effect, the information
vector is encoded by an LDPC code, as described in the
following.

B. LDPC Codes

In order to obtain a memory capability of k bits, consider an
LDPC code of dimension k defined by a parity check matrix
H of size m× n, with k ≤ m− n. The Tanner graph of the
code is composed of n Variable Nodes (VN) v ∈ {1, . . . , n}
and m Check Nodes (CN) c ∈ {1, . . . ,m}. The degree of the
VN v is denoted as dv and the degree of the CN c is denoted
as dc. Here, the code is assumed to be regular, i.e, dv does
not depend on v, and dc does not depend on c. Denote by Nv
the set of CNs connected to the VN v, and denote by Nc the
set of VNs connected to the CN c.

At time instant t = 0, dv copies of the codeword x are
written in the memory. Denote by x

(t)
j , j = 1, · · · , dv , the

j-th binary vector of length n that is contained in the memory
at time instant t. Let x(t)j,v be the v-th component of the vector

x(t). Between two successive time instants t and t + 1, the
vectors x

(t)
j stored in the memory undergo two operations.

First, the vectors x(t)
j are passed through BSC(α), which gives

degraded vectors y
(t)
j . Second, a correction circuit is applied

to the y
(t)
j and outputs the vectors x(t+1)

j that are written back
in the memory at instant t+ 1.

C. Correction Circuit

At every time instant t, in order to initialize the correction
circuit for VN v, we need to uniquely associate each of the
bit copies y(t)j,v (j = 1 · · · , dv) to one of the CNs c ∈ Nc. We
hence define a one-to-one mapping σ : Nc → {1, · · · , dv}
that orders all the nodes c ∈ Nc as j = σ(c). The ordering is
fixed once for all prior to the storage, and does not depend on
the considered time instant.

At time instant t, the correction circuit is initialized with
messages ν(t)c,v from VN v to CN c as ν(t)c,v = y

(t)
σ(c),v . Let

ν(t) = ν
(t)
c,Nc\v denote all incoming messages to the CN c

except from the VN v. For each CN c ∈ C, and for all v ∈ Nc,
parity check equations are computed as

µ(t)
c,v = Ψ(ν(t−1)) =

⊕
ν(t−1) (1)

where
⊕

is taken componentwise and denotes the XOR sum
of the incoming messages. Then, let µ(t)

c,v be the extrinsic
message from a CN c to a VN v and let µ(t) = µ

(t)
Nv\c,v denote

all incoming messages to the VN v except the message from
the CN c. For each VN v ∈ V and for all c ∈ Nv , the value of
the bit copy x(t+1)

σ(c),v output by the correction circuit is decided
with a majority voting operation defined as

x
(t+1)
σ(c),v = Φ(µ(t)) =

{
1 MAJ(µ(t)) ≥ b
0 otherwise.

(2)

The function MAJ is defined as MAJ(µ) =
∑

µ wherein
∑

denotes the sum of its argument’s components. The value b is
a parameter of the correction circuit.

The correction circuit at time instant t corresponds to
one iteration of a majority logic decoder. Further, it was
shown in [5] that with this definition of the correction circuit,
the memory architecture is equivalent to a modified faulty
Gallager B decoder. The values ν(t)c,v and µ

(t)
c,v correspond to

extrinsic messages that are exchanged in a decoder and the
memory degradation model is equivalent to introducing errors
in ν

(t)
c,v according to BSC(α). Hence, in the following, we

often refer to the memory architecture as the decoder and we
define the timing error model of the correction circuit over the
messages ν(t)c,v and µ(t)

c,v .

D. Timing Errors Model for the Correction Circuit

In this section, we describe the error model that was
proposed in [11] and considered in [10] in order to represent
timing errors in the decoder.

Denote by Φ a deterministic Boolean function with
d inputs (u

(t)
1 , . . . , u

(t)
d ) and one single output w(t) =

Φ(u
(t)
1 , . . . , u

(t)
d ). The timing error model we consider is de-

picted in Figure 1. In this model, the output of the gate subject
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Fig. 1. Decoder timing error model [12].

to timing errors is a random variable z(t). The random variable
z(t) is described by the following conditional probability
distribution{

P (z(t) = w(t) |w(t), w(t−1)) = 1− ε,
P (z(t) = w(t−1)|w(t), w(t−1)) = ε.

(3)

It defines an error model with memory since the value of z(t)

can depend on the value of w(t−1) at the previous iteration.
According to (3), the random variable z(t) can take only
two values, namely w(t) and w(t−1). This model captures the
probability that the gate output did not switch before the clock
time.

In the correction circuit with timing errors, we assume
that the initialization of the messages ν(t)v,c is error-free. We
also assume that at the first time instant (labeled as 1), the
correction circuit is error-free. This assumption was already
considered in [10] so that the decoding of the current codeword
does not depend on the codeword previously stored in the
memory. In practice, this may be done by waiting for several
clock cycles for the signal to stabilize before storing back the
bit copies at the output of the correction circuit.

In the following, we denote by ν(t)c,v and µ(t)
c,v the messages

that are exchanged in the error-free decoder, and by ν̃(t)c,v and
µ̃
(t)
c,v the messages that are exchanged in the decoder with

timing errors at iteration t. In the decoder with timing errors,
for t > 1, the deterministic CN and VN mappings (1) and (2)
are followed by the timing errors model represented by (3). For
simplicity, here, we assume that the parameter ε is the same for
VN computation and for CN computation, which is reasonable
since the two mappings are implemented on the same hardware
with the same clock period. However, if needed, the theoretical
analysis we present may be easily generalized to values of ε
that are different for CNs and VNs.

III. PERFORMANCE ANALYSIS

This section provides a theoretical analysis of the perfor-
mance of the memory architecture constructed from a correc-
tion circuit with timing errors. Denote by P

(t)
e = P (x

(t)
j,v 6=

xv) the error probability of the memory architecture. The
performance of the memory can be characterized in terms
of its stability. The memory is said to be stable if the error
probability P

(t)
e converges to a fixed point that permits the

successful decoding with a powerful BP or ML decoder of
the codeword stored in the memory at any time instant t.
In other words, the limit as t goes to infinity of the error
probability P

(t)
e must be lower than the threshold of the

considered powerful decoder.
Since the memory architecture defined in Section II is equiv-

alent to a modified Gallager B decoder, we can characterize
its error probability by using the same tools as for the analysis

of LDPC decoders. As for the analysis of the performance of
decoders under serial scheduling [13], our analysis is based
on the comparison of the computation graphs of the decoder
under timing errors and of the decoder without timing errors.
In the following, we will assume, as in [13], [14], that these
computation graphs are cycle-free and we will refer to them
as computation trees. See [15, Chapter 4] for the complete
definition of a computation tree.

A. Computation Tree Analysis

~

Fig. 2. For both figures, the solid lines represent the computation trees N (3)
e

and Ñ (3)
e of the perfect decoder (left) and of the decoder with timing errors

(right), respectively. For the decoder with timing errors, we assume that only
one error is introduced in the computation of the message from v3 to c2 at
time instant t = 2.

In the decoder, the message on the edge e = (v, c) from VN
v to CN c in time instant t can be expressed as a stochastic
function f (t)v,c of the initial codeword bits xv′ (that give the all
equal bit copies x(0)j,v′ ) corresponding to the set of all VNs v′

in the computation tree. Note that f (t)v,c is a stochastic function
since its depends on the realizations of the transient errors
that result from the memory degradation. Denote by N (t)

e the
computation tree of edge e at time instant t for the decoder
without timing errors, and denote by Ñ (t)

e the computation
tree of the decoder with timing errors. For the decoder without
timing errors, N (t)

e by definition includes all the VNs and CNs
at distance strictly less than 2t−1 of v [14]. On the opposite,
according to the model defined in (3), Ñ (t)

e is not a complete
computation tree but a random graph which depends on the
timing errors that occur in the decoder.

Before we establish the relation between the size of the
computation tree and probability of error, we first give exam-
ples of computation trees of the decoder without timing errors
and of the decoder with timing errors.

Example. The left part of Figure 2 represents the computation
tree of the decoder without timing errors at time instant t = 3.
The right part represents the computation tree of the decoder
with timing errors at t = 3, assuming that one timing errors
have been introduced in the computation of the messages from
v3 to c2 at time instant t = 2. In the decoder without timing
errors, a message exchanged from VN v to CN c at time instant
t can be expressed as a function f (`)v,c of a given set of codeword
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bits. In the decoder with timing errors, this function is denoted
f̃
(t)
v,c and applies on a possibly different set of codeword bits.

The computation trees of Figure 2 are obtained from these
functions as follows.
• At time instant t = 1, since no timing error is introduced,

we get ν(1)v2,c2 = ν̃
(1)
v2,c2 = f

(1)
v2,c2(y2), ν(1)v3,c2 = ν̃

(1)
v3,c2 =

f
(1)
v3,c2(y3). Also µ

(`)
c2,v = µ̃

(`)
c2,v = f(y2, y3). Hence,

N (2)
e = Ñ (2)

e = {v, c2, v2, v3} and the two decoders
have the same computation tree.

• At time instant t = 2, we get ν
(2)
v2,c2 = ν̃

(2)
v2,c2 =

f
(2)
v2,c2(y2, y4, y5) and ν

(2)
v3,c2 = f

(2)
v3,c2(y3, y6, y7). Since

one timing error is introduced when computing ν̃
(2)
v3,c2 ,

we get ν̃
(2)
v3,c2 = ν̃

(1)
v3,c2 = f̃

(2)
v3,c2(y3) = f

(1)
v3,c2(y3)

that is the message from time instant t = 1. As a
result, µ(2)

c2,v = f
(2)
c2,v(y2, y3, y4, y5, y6, y7), while µ̃(2)

c2,v =

f̃
(2)
c2,v(y2, y3, y4, y5). This gives the computation trees
N (3)
e and Ñ (3)

e in Figure 2.

In order to perform our analysis, we need the notion of tree
inclusion defined as follows. Given two subtrees N1 and N2

of the Tanner graph, N1 is said to be included in N2, and
denoted N1 ⊆ N2, if all the (check and variable) nodes in N1

are also in N2. From the message exchange in Example, it
can be noticed that N (2)

e ⊆ Ñ (3)
e ⊆ N (3)

e . This relation may
be generalized to any error pattern and at any time instant, as
stated in the following theorem.

Theorem 1 ( [12]). For any edge e and at any time instant
t > 0,

N (t+1)
e ⊆ Ñ (3t)

e ⊆ N (3t)
e . (4)

Proof: The proof is the same as the proof of [12, Theorem
1]. Indeed, transient errors in the memory cells do not change
the computation trees of the equivalent decoders, but only their
error probabilities (see Theorem 2).

The above theorem shows that, at time instant 3t, the
computation tree of the decoder with timing errors is bounded
by the computation trees of the decoder without timing errors
at time instants t + 1 and 3t . Here, the functions f (t)v,c that
represent the message exchange in the decoder are stochastic
in the sense that they depend on the errors that are introduced
in the memory. These errors impact the output values of the
considered functions but do not change the computation trees
of the decoders.

Note that the bounds (4) on computation trees cannot, in
general, be rewritten into bounds on error probabilities, unless
the Belief Propagation (BP) decoder is considered (see [14,
Theorem 7]). However, these bounds permit to analyze the
error probability of the memory under timing errors when t
grows to infinity.

B. Asymptotic Error Probability of the Memory Architecture

Denote by P
(t)
e the bit error probability of the memory

architecture without timing errors at time instant t, and denote
by P̃

(t)
e the bit error probability of the memory architecture

with timing errors. The memory degradation model is out-
put symmetric, and the deterministic VN and CN mappings

followed by the timing error model (3) are also symmetric,
see [16], [17]. As a result, P (t)

e and P̃ (t)
e do not depend on the

stored codeword. In the analysis, we thus assume without loss
of generality that the all-zero codeword was initially stored in
the memory.

The expression of P (t)
e can be obtained with density evo-

lution for faulty decoders, as described in [7]. The error
probability P̃ (t)

e could be expressed with the density evolution
technique proposed for decoders with memory [17], but its
expression would be very difficult to derive and to evaluate.
Hence, in the following, instead of deriving the expression of
P̃

(t)
e for any t, we only give the asymptotic error probability
P̃

(+∞)
e .

Theorem 2. If the error probability P (t)
e has a limit P (+∞)

e

when t goes to infinity, then P̃ (+∞)
e = P

(+∞)
e .

Proof: The concentration theorem of [7] shows that, at a
given iteration, the fraction of incorrect messages exchanged
in the LDPC decoder under transient errors converges to its
expected value as n goes to infinity. As a result, the error
probability of a given decoder under transient errors only
depends on the considered computation tree. The concentration
theorem hence permits to conclude that the decoder without
timing errors under Ñ (t′)

e gives the same error probability as
the decoder with timing errors under N (t)

e when Ñ (t′)
e =

N (t)
e . In addition, by letting t go to infinity in (4), we get

lim
t→∞
Ñ (t)
e = lim

t→∞
N (t)
e , which gives P̃ (+∞)

e = P
(+∞)
e , since

the same computation tree gives the same error probability.
Theorem 2 shows that the performance of the memory

architecture with timing errors reaches the performance of the
memory architecture without timing errors when the value of
t is large enough. As a result, the stability of the memory
does not depend on the timing errors in the correction circuit,
but only on the transient errors introduced in the memory
by the faulty hardware. This confirms what was observed
experimentally in [10] for the Gallager B decoder for a high
number of iterations. In the simulation results we now present,
we verify the accuracy of our analysis by comparing the
asymptotic error probability of the memory architecture with
timing errors to the asymptotic error probability of the memory
architecture without timing errors.

IV. NUMERICAL RESULTS

In this section, we evaluate through simulations the Bit Error
Rate (BER) performance of the Gallager B decoder under
transient errors and timing errors according to the models of
Section II. We consider a BSC of parameter α and we evaluate
the Gallager B performance for two regular quasi-cyclic codes
with column weight dv = 4 and length n = 1296. The first
code has rate 1/2 and row weight dc = 8, while the second
code has rate 3/4 and dc = 16.

Fig. 3 represents the BER of the Gallager B decoder for the
two considered codes for ` = 100 iterations and for ε = 0,
ε = 0.2. For both codes, the performance of the decoder with
timing errors is the same as the performance of the decoder
without timing errors, despite the fairly large value ε = 0.2.
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Fig. 3. BER of Gallager B decoder after 100 iterations.

Note that the value of ε is not known nor the knowledge of it
used by the correction circuit.

The results of Fig. 3 are in accordance with Theorem 2 that
shows that the asymptotic performance is the same with and
without timing errors. The above results confirm what was
experimentally observed in [10] for the Gallager B decoder
under timing errors but without transient errors on the Latin
Square (LS) codes LS(155, 64) and LS(2388, 1793) of [18].
The same conclusions were obtained in [12] on (3, 5) codes
and (3, 6) codes of length n = 1000.

V. CONCLUSION

In this paper, we provided an analysis of the asymptotic
performance of the TK memory architecture under transient
errors in the memory cells and timing errors in the correc-
tion circuit. We showed that as t goes to infinity, the error
probability of the architecture with transient and timing errors
converges to the error probability of the architecture with
transient errors only. As a result, the stability of the memory
does not depend on the timing errors that are introduced in
the correction circuit. Monte Carlo simulations confirmed this
result even for moderate code lengths.

Finally, it is worth noting that the results of the theoretical
analysis could be straightforwardly extended to other LDPC
decoders such as BP or Min-Sum. For BP decoders, the
bounds on the computation trees of Theorem 1 could even be
rewritten into bounds on error probabilities for a finite number
of iterations, although the considered timing error model may
be less realistic for this decoder.
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