
Low-Latency LDPC Decoding Achieved by
Code and Architecture Co-Design

Elsa Dupraz?, François Leduc-Primeau?†, and François Gagnon†
? IMT Atlantique, Lab-STICC, UBL, Brest, France
† École de Technologie Supérieure, Montréal, Canada

Abstract—A novel low-density parity-check decoder architec-
ture is presented that can achieve a high data throughput while
retaining the flexibility to decode a wide range of quasi-cyclic
codes. The proposed architecture allows to combine multiple
message-update schedules, providing an additional degree of
freedom to jointly optimize the code and decoder architecture.
Protograph-based code constructions are introduced that exploit
this added degree of freedom in order to maximize data through-
put, and that are also optimized to reduce the complexity of the
required parallel data accesses. For some examples and under
an ideal pipeline speedup assumption, the proposed architecture
and code designs reduce decoding latency by a factor of 3.2×
compared to a decoder using a strict sequential schedule.

I. INTRODUCTION

A desirable feature of low-density parity-check (LDPC)
decoders is the ability to support a wide range of code
characteristics, in order to allow code rate and length adap-
tation, or to handle multiple communication standards with a
single decoder. In this paper, we are interested in designing
highly parallel LDPC decoder architectures that retain the
flexibility to decode any quasi-cyclic (QC) code that satisfies
basic constraints (maximum node degrees, maximum lifting
factor, etc.). Highly parallel architectures are interesting for
applications that demand large data throughputs. They are also
useful for low-power operation, since the latency reduction
obtained from parallel execution can be traded off to tolerate
an increase in propagation delays resulting from the low-
voltage operation of the circuit.

Three key strategies are widely used to achieve high-
throughput LDPC decoders. The first consists in generating
the decoder messages by following a sequential (also known as
serial) update schedule, which reduces the number of decoding
iterations approximately by a factor of two [1]. The other two
are standard circuit design strategies: implementing several
processing units in parallel, and using circuit pipelining to split
up each unit into several stages and thus increase the clock
frequency. Unfortunately, it is not possible to use the three
techniques simultaneously, because the sequential schedule in
general prevents the overlap of computations belonging to
different layers.

We propose a novel decoder architecture that can simulta-
neously use a large number of processing units together with
pipelining while also taking advantage of an efficient message-
passing schedule. This architecture uses a mechanism called
“∆-updates” to maintain the correctness of the computation
irrespective of the message-update schedule. As a result, the

schedule can be chosen on a node-by-node basis, providing an
additional design parameter that can be optimized. We show
that this allows to combine parallel processing with pipelining
with only a small penalty in the average number of iterations,
resulting in a decoder with a faster convergence time.

Because of the highly parallel nature of the proposed
architecture, it becomes challenging to ensure that the re-
quired data is always accessible, while maintaining a low
complexity for the memory management circuits. We discuss
how to optimize the data management for general QC codes,
and furthermore propose an optimized code construction that
reduces the decoder complexity.

In our construction, the code degree distributions are de-
scribed by protographs [2], which allows to obtain very
efficient QC codes [3]. The standard approach for constructing
QC codes from protographs consists of a two-step lifting [3]
that aims to improve the minimum distance and girth proper-
ties of the code. The first lifting step produces a base matrix
from a given protograph by means of a Progressive Edge-
Growth (PEG) algorithm [4] that seeks to maximize the girth
of the base matrix. The second step is realized with a circulant-
PEG algorithm [5] and consists of replacing all the non-zero
components of the base matrix by circulant matrices. We
propose a modified PEG algorithm for constructing the base
matrix at the first lifting step. As shown in our simulation
results, the modified construction enables efficient data man-
agement at the price of a slight performance degradation.

The remainder of this paper is organized as follows. Sec-
tion II reviews the standard protograph-based code construc-
tion approach. Section III briefly reviews some decoder archi-
tectures available in the literature and describes the proposed
architecture. Then, Section IV presents our architecture-aware
optimized code constructions. Finally, Section V evaluates the
error-correction and throughput performance of the proposed
codes and architecture.

II. STANDARD CODE CONSTRUCTION

A. Parity-check matrix

The parity check matrix H of size M × N of an LDPC
code can be represented by a bipartite Tanner graph. In this
Tanner graph, the set of vertices is composed of N Variable
Nodes (VNs) V = {v1, · · · , vN} and M Check Nodes (CNs)
C = {c1, · · · , cM}. There is an edge between a VN vn and a
CN cm if Hm,n = 1. We denote by dc the degree of a CN, and
by dc,max the largest CN degree in the Tanner graph. We also

denote by Cv ⊆ C the set of CNs that are connected to VN v,
and by Vc ⊆ V the set of VNs that are connected to CN c. We
now describe the standard method for constructing a parity-
check matrix H that ensures good decoding performance.

B. Protographs
A protograph [2] is a small Tanner graph that describes the

connections between CNs and VNs in the full Tanner graph of
the code. We denote by MS ×NS the size of the protograph,
and the matrix representation S of the protograph is given by

S =

[
S1,1 · · · S1,NS

SMS ,1 · · · SMS ,NS

]
, (1)

where the coefficients Si,j are positive integers. A protograph
describes the connections between MS types of CNs and
NS types of VNs. In any LDPC code constructed from the
protograph S, any CN of type i will be connected to Si,j VNs
of type j. The coefficients Si,j can be greater than 1, which
will give parallel edges in the Tanner graph representation of
S.

The final code performance highly depends on its under-
lying protograph S. For an AWGN channel, Density Evolu-
tion [6] evaluates the protograph threshold as the minimum
SNR that can be tolerated by the decoder to reconstruct the
original codeword without error, when the codeword length
tends to infinity. For a given rate, the protograph can be
optimized by Differential Evolution [7], which aims at finding
the protograph with the smallest threshold.

From a given protograph, we can construct a QC parity
check matrix H of the desired size by applying the two-steps
lifting procedure of [3]. This two-steps lifting will not only
allow us to improve the minimum distance and girth properties
of the code, but also to address the constraints of the decoder
implementation by proposing novel code constructions that
only modify one of the two steps of the lifting.

C. Two-steps lifting
The first lifting step aims to construct a base matrix B of

size MB × NB from the protograph, where MB = Z1MS ,
NB = Z1NS , and Z1 is called the first lifting factor. A base
matrix constructed from a given protograph S will contain
Z1 VNs of each of the NS types and Z1 CNs of each of
the MS types. In the following, the VNs (resp. CNs) of the
base matrix are referred to as B-VN (resp. B-CN). The first
lifting is realized by means of a copy-and-permute procedure
that first consists of duplicating Z1 times the protograph S.
The edges of the obtained Tanner graph are then interleaved so
that the protograph degrees Si,j are fulfilled, the Tanner graph
of B is connected, and there is no remaining parallel edges.
Edge interleaving is realized by using a PEG algorithm [4] that
reduces the amount of short cycles in B, since short cycles
could degrade the final code performance.

The second lifting aims to construct a QC parity-check
matrix H of size M × N from the base matrix B, where
M = Z2MB , N = Z2NB , and Z2 is called the second lifting
factor. The second lifting is done by replacing all the non-
zero components of the matrix B by circulant matrices of

TotalMEMrd#1

wr#1

ShiftUnit

rd#2

CNUnitIntrinsicMEM

TotalMEMrd#1

wr#1

ShiftUnit

rd#2

CNUnitIntrinsicMEM

CNPE CNPE

CWMemManager CWMemManager

x MAX_COLORS

x MAX_LIFT

x MAX_COLORS

x MAX_LIFT

x MAX_LIFT

ShiftUnit

+ Δ

ShiftUnit

+ Δ

x MAX_LIFT

x MAX_COLORS

x MAX_COLORS

x MAX_COLORS

Fig. 1. High-level view of the decoder architecture.

size Z2×Z2. This replacement is realized by a circulant PEG
algorithm [5] that again aims at reducing the amount of short
cycles in the final parity-check matrix H .

III. DECODER ARCHITECTURE

A. Review of state-of-the-art architectures

Most architectures in the literature targeted at QC codes
perform the processing row-wise and implement the well-
known Offset Min-Sum (OMS) algorithm. Two main ap-
proaches allow combining the use of a strict row-layered
message schedule with parallel computations. The first consists
in implementing one [8], [9] or two [10] small processing units
that in each clock cycle accept as input the messages from
one B-VN to one B-CN and output the messages from one
B-CN to one B-VN. The processing of one row layer (i.e. all
messages to/from one B-CN) then requires at least dc/U clock
cycles, where U is the number of processing units. Because of
the relatively large number of cycles required per layer, it is
possible to order the computations in such a way that a deep
pipeline can be used while keeping the number of stall cycles
at a minimum. A second approach consists in implementing
large processing units that process one row layer per clock
cycle. In general, such an architecture cannot use pipelining
because the layered message schedule requires the processing
of the current layer to be completed before the next layer can
start. Exceptionally, if the parity-check matrix is designed to
ensure that consecutive layers never share a variable node, then
a two-stage pipeline can be used [11].

B. The ∆-update architecture

Our proposed architecture is similar to the second approach
described above. However, unlike the solution of [11], our
architecture admits the use of a moderately deep pipeline
by introducing the possibility of ignoring some of the data
dependencies of the layered schedule. The architecture, shown
in Fig. 1, can be split in two parts. The top part is com-
posed of memory management units that store the belief1

sums associated with each variable node. The bottom part is
composed of at least Z2 processing units called CNPEs, each

1We call belief a log-likelihood ratio scaled by a constant.

one responsible for evaluating all the messages sent to and
from a particular check node.

Typically, the processing units of a parallel row-layered
architecture would take as input a vector Λ of VN belief
sums, and output an updated vector Λ′. The first novelty of
the proposed architecture is that the processing units, rather
than generating updated VN sums, compute the difference
∆ = Λ′ −Λ. Once the processing completes, this difference
is used to update the VN sums. As a result, the architecture
seamlessly supports any kind of message schedule. If a par-
ticular B-VN is involved in multiple concurrent check-node
computations, its message-update schedule is simply altered,
while other B-VNs can still benefit from sequential updates.

Compared to a standard row-layered architecture, this mod-
ified architecture has one minor drawback. Most state-of-the-
art architectures only require one shifting unit per check-node
input, by allowing the position of each VN in memory to
change throughout the decoding operation. In this architec-
ture, since a particular B-VN might be involved in multiple
concurrent check-node computations, the position of VNs in
memory must remain fixed, and a second write-side shifting
unit is required, as shown in Fig. 1. Note that this shifting unit
is smaller than the read-side one, since it routes ∆ vectors
that require fewer bits per element than Λ vectors. Also, the
additional delay introduced by this shifting unit is not a major
concern since the ∆-update architecture enables the use of a
deeper pipeline.

C. Memory access
At each cycle, the processing units must access the belief

sums associated with dc B-VNs, where dc is the degree of
the B-CN currently being processed. Since the architecture
is intended to support any quasi-cyclic code, it must support
parallel data access to a Λ vector corresponding to any B-VN
subset of size dc,max. To avoid requiring the costly routing
logic that would be necessary to select such arbitrary subsets,
we propose to group all B-VNs into K ≥ dc,max memory
banks such that no two B-VNs placed in the same bank need
to be accessed simultaneously. We then design the CNPE units
so they accommodate up to K inputs. Since the computation
involves finding minimum values, unused inputs can easily be
disabled by setting their value to the maximum representable
value. With this strategy, the complexity of the architecture
depends on K. In the following section, we propose a B-VN
grouping method that minimizes K.

IV. PROPOSED CODE CONSTRUCTION

A. Memory layout optimization
To optimize the proposed architecture, we would like to

group into the same memory bank only B-VNs that do not
share any B-CNs as neighbors. More formally, consider K
memory banks and denote by Mk, k ∈ {1, · · · ,K}, the set
of B-VNs that are allocated to the k-th memory bank. For all
k ∈ {1, · · · ,K}, the set Mk is constructed such that for all
v, v′ ∈Mk such that v 6= v′,

Cv ∩ Cv′ = ∅. (2)

This condition ensures that the B-VNs allocated to the same
memory bank cannot be updated in parallel, so that there
is no conflict in memory access. In order to dimension the
memory and to allocate each B-VN to a memory bank, we
want to partition the set of B-VNs into K setsMk that satisfy
condition (2). This partitioning problem could be solved as a
graph coloring problem applied on a VN-only graph. The VN-
only graph contains all the B-VNs as vertices, and there is an
edge between two B-VNs if they are connected to at least one
common B-CN. A standard graph coloring algorithm [12] is
then applied on the VN-only graph in order to construct the
sets Mk.

The graph coloring algorithm aims to partition the graph
into the minimum possible number of colors. However, with
the above approach, this minimum number is determined by
the structure of the Tanner graph and some Tanner graphs may
not allow for a small number of colors. This is why we would
like to minimize the number of colors directly during the code
construction. For this, we propose a modified PEG algorithm
which we now describe.

B. Modified PEG algorithm

Our modified PEG algorithm replaces the standard PEG
algorithm used for the first lifting in the code construction
of Section II. This first lifting constructs the base matrix B
from a given protograph S. In this section, for simplicity “VN”
refers to “B-VN” and “CN” refers to “B-CN”.

The proposed algorithm takes the maximum number of
colors K ≥ dc,max as input, which gives a set of colors
{1, 2, · · · ,K}. Each CN c maintains a list of colors Lc

containing the colors of its VN neighbors. Each VN v also
maintains a list Lv of the colors of all the VNs with which it
shares a common CN. At the beginning of the algorithm, all
the lists of colors Lc and Lv are initialized to ∅.

When our modified algorithm needs to add new edges to
the Tanner graph, it first selects a VN v at random in V ,
starting with VNs of highest degrees. Once a VN is selected,
the algorithm chooses all its connections in succession instead
of just one at random as in the standard PEG. This will allow
the algorithm to assign a color to VN v once all its connections
are established. When v is selected, its list of colors is given
by Lv = ∅, since it has no connection yet with any CN. For
every edge it wants to assign, the algorithm computes all the
distances d(v, c) between this VN and all the CNs c ∈ C,
where d(v, c) is the length of the shortest path between v and
c. If there is no path between v and c, then d(v, c) = +∞.
In order to add one edge, the algorithm verifies the following
saturation and colors condition.

1) Saturation condition: the algorithm first constitutes a set
that contains for all j ∈ {1, · · · , SM}, all CNs of type
j such that VN v has strictly less than Si,j connections
with CNs of type j. From this set, it constitutes S by
retaining for all j ∈ {1, · · · , SM} only the CNs of type
j that have strictly less than Si,j connections with VNs
of type i.

2) Color condition: for the current VN v, the algorithm
computes the union between its list of colors Lv and
the list of colors of all the CNs c ∈ S. The set D is then
composed by the CNs that satisfy the color condition,
i.e. for which the size of the union is strictly lower than
the maximum number of colors.

At this step, if D = ∅, then the algorithm is restarted. If
after a given number of restarts, the algorithm is not able to
construct the code, the maximum number of colors must be
augmented. If D 6= ∅, the algorithm selects at random a CN ĉ
that both belongs to D and that has maximum distance with
VN v among D. To finish, it adds an edge between v and ĉ,
and it updates the list of colors Lv of v as Lv = Lv ∪ Lĉ.

Once it added a new edge, the algorithm moves to the next
one, until all the connections of VN v have been assigned. It
then attributes a color fv to VN v. This color is selected at
random over the set {1, 2, · · · ,K} \ Lv . The color condition
guarantees that this set is not empty. The algorithm also
updates the lists of colors Lc of all the CNs c ∈ Cv as
Lc = Lc ∪ {fv}. The algorithm may also update all the lists
of colors of all the VNs that are connected to CNs c ∈ Cv , but
this is not useful since the edges of these VNs have already
been assigned by the algorithm.

When adding a new edge, our algorithm must verify the
color condition, which is an additional condition compared to
the standard PEG. In the simulation results section, we discuss
the influence of this condition on the code performance.

C. Message schedule optimization

Since the decoder architecture is pipelined and processes
one B-CN per cycle, T B-CNs are processed concurrently,
where T is the number of pipeline stages (we assume that
T ≤ MB). For a pair of B-CNs present at the same time
in the pipeline, some data dependencies of the sequential
message-update schedule will be ignored for any B-VN that
is connected to both B-CNs. To speed up the convergence of
the decoder, we wish to optimize the order in which the B-
CNs are processed to minimize the number of such ignored
dependencies.

Let us define a weight wi,j that represents the number of
dependencies between B-CNs ci and cj , i.e., for i 6= j, wi,j =
|Vci ∩ Vcj |. We wish to find an ordering of the B-CNs that
minimizes

T−1∑
d=1

MB∑
i=1

wi,i⊕d , (3)

where i⊕ d = (i− 1 + d mod MB) + 1.
Since the number of base-row permutations MB ! is usually

too large to be explored exhaustively, we rely on the following
randomized greedy algorithm. This algorithm takes as input
the set of B-CNs C, and iteratively outputs an ordering σ(t),
t ∈ {1, 2, · · · ,MB}. As the algorithm iterates, it keeps track
of the content of the processing pipeline as a vector P , which
contains up to T − 1 indices.

1) Initialization: The first element σ(1) is chosen randomly
from the set of B-CNs having the smallest total weight.

Formally let wci =
∑MB

j=1 wi,j . Then σ(1) is chosen
randomly from the set Sinit = {i : wci = minc∈C(wc)}
and added as the first element of P .

2) Iteration t > 1: Subsequent B-CNs are chosen to
minimize their dependencies with other nodes in the
pipeline. We define wi,P =

∑
j∈P wi,j . The next ele-

ment σ(t) is chosen randomly from the set S = {i :
wi,P = minj∈U (wj,P)}, where U = {1, · · · ,MB} \
{σ(1), · · · , σ(t− 1)} is the set of unassigned indices.

3) Pipeline update: After each iteration, the new element
σ(t) is added at the end of P . After this, if P contains
more than T − 1 elements, P (0) is discarded and all
other elements are moved to the next lower index.

This randomized algorithm can be invoked multiple times to
try to improve the global score given by (3).

V. SIMULATION RESULTS

To evaluate the performance obtained using the proposed
QC codes and decoder architecture, we consider a binary-input
additive white Gaussian noise channel. The channel output is
given by y = x+w, where x ∈ {−1, 1} and w is a Gaussian
random variable with mean 0 and variance σ2.

All codes were constructed from the same protograph,
which was optimized by differential evolution. In order to
increase the sparsity of the base matrices obtained from this
protograph, we set MS = 2, NS = 4, and we imposed a
maximum value of 3 for the coefficients Si,j . The optimization
procedure yielded the protograph with dc,max = 7:

S =

[
0 2 3 1
2 0 3 2

]
, (4)

From this protograph, we applied the two-steps lifting
introduced in Section II. We first used the modified PEG
algorithm introduced in Section IV with lifting factor Z1 = 36
and three different maximum number of colors K = 7, 8, 9.
This provided three base matrices of size 72 × 144. We also
constructed a fourth base matrix of size 72× 144 by applying
the standard PEG algorithm without any color restriction. In
the following, the codes obtained from K = 7, 8, 9, are called
C7, C8, C9, respectively, and the code constructed without a
color restriction is called CNR.

We evaluated that the base matrix of C7 has girth 4, while
the three other base matrices have girth 6. This girth difference
can be explained by the fact that for C7, K = dc,max = 7,
which places a difficult constraint on the code construction.
We further observed that the base matrices of C8, C9, and
CNR have approximately the same number of length-6 cycles.
Although the code performance does not only depend on
cycle distribution, this means that there is a good chance that
the final decoding performance of C8, C9, and CNR, will be
similar. For the second lifting step, we considered Z2 = 18
and we applied the standard circulant PEG algorithm to the
four base matrices in order to obtain QC matrices of size
1296 × 2592. It is worth noting that all four obtained QC-
codes have girth 8.

1.4 1.6 1.8 2 2.2 2.4 2.6
1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

SNR (dB)

BE
R

C7, K=7

C8, K=8

C9, K=9

CNR, no color restriction

Fig. 2. Performance comparison of the four constructed QC-codes

The bit-error rate (BER) performance of the four codes is
obtained with an OMS decoder implemented according to the
architecture described in Section III. For each codeword bit,
the decoder takes as input a belief value µ = αy/σ2, where
α is set to 4 and µ is quantized on 6 bits by rounding it
to the nearest integer and saturating it within [−31, 31]. The
maximum number of iterations is set to 25 and the OMS offset
parameter is set to 1. The constructed codes have base matrices
with a relatively low density (4.5% of non-zero elements).
As a result, it is in fact possible to use the algorithm of
Section IV-C to find a row ordering that is compatible with
a strict row-layered message schedule (i.e. for which (3) is
zero) up to a pipeline depth of T = 5. The BER results for
this case are shown in Figure 2. Each BER point was obtained
from 100 frames in error. We first observe that C7 shows
degraded performance compared to the three other codes. This
result was expected since this code is the only one for which
the base matrix has girth 4. On the other hand, we observe
that C8 and C9 have similar performance. C8 shows a slight
performance degradation in the error floor compared to C9, but
it interestingly reduces the architecture memory requirements.
Surprisingly, CNR also shows a small performance degradation
compared to C9. The modified PEG algorithm constructs the
edges in a different order than the standard PEG, which may
explain the performance improvement.

The proposed architecture allows to increase the pipeline
depth by ignoring some data dependencies of the row-layered
message schedule. To illustrate the impact of this approach, let
us assume that the pipeline is ideal, that is it permits a clock
period of τ/T , where τ is the clock period without pipelining.
We take code C8 and consider increasing the pipeline depth to
T = 20. After optimizing the row ordering using the algorithm
of Section IV-C, we obtain the BER through Monte-Carlo
simulation with an iteration limit of 25 iterations. We find
that this BER is approximately equal to the BER obtained
using a strict row-layered schedule with a limit of 20 iterations.
Therefore, under the ideal pipelining assumption, the deeper

pipeline combined with the use of a relaxed schedule decreases
latency by a factor of 20/5 · 20/25 = 3.2.

The proposed approach can also be applied to existing
codes. For instance, we consider the rate 1

2 code defined in the
IEEE 802.11n (WiFi) standard, which has a base matrix den-
sity of 30%, and cannot be pipelined under a strict row-layered
schedule. We evaluated the BER performance of a pipelined
decoder with T = 4 stages, optimized B-CN ordering, and
a maximum of 25 iterations. We find that a decoder using a
strict schedule requires 20 iterations to achieve approximately
the same BER. Therefore, the proposed pipelined decoder also
reduces latency by a factor of 4 · 20/25 = 3.2 on this code.

VI. CONCLUSION

This paper introduced a novel LDPC decoder architecture
that greatly reduces the decoding latency by carefully combin-
ing parallel processing and pipelining. It also proposed new
QC code constructions that further improve this throughput
and lower the memory requirements of the architecture. Future
work will be dedicated to the optimization of the code and de-
coder parameters for improved latency, decoding performance,
and energy consumption.

ACKNOWLEDGEMENTS

The authors were supported by the grant ANR-17-CE40-
0020 of the French National Research Agency ANR (project
EF-FECtive).

REFERENCES

[1] E. Sharon, S. Litsyn, and J. Goldberger, “Efficient serial message-passing
schedules for LDPC decoding,” IEEE Trans. on Information Theory,
vol. 53, no. 11, pp. 4076–4091, Nov 2007.

[2] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” IPN progress report, vol. 42, no. 154, pp. 42–154, 2003.

[3] D. G. Mitchell, R. Smarandache, and D. J. Costello, “Quasi-cyclic
LDPC codes based on pre-lifted protographs,” IEEE Transactions on
Information Theory, vol. 60, no. 10, pp. 5856–5874, 2014.

[4] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Regular and irregular pro-
gressive edge-growth Tanner graphs,” IEEE Transactions on Information
Theory, vol. 51, no. 1, pp. 386–398, 2005.

[5] J. Thorpe, K. Andrews, and S. Dolinar, “Methodologies for designing
LDPC codes using protographs and circulants,” in Intl. Symp. on
Information Theory (ISIT), 2004, p. 238.

[6] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of
capacity-approaching irregular low-density parity-check codes,” IEEE
Transactions on Information Theory, vol. 47, no. 2, pp. 619–637, 2001.

[7] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[8] C. Studer, N. Preyss, C. Roth, and A. Burg, “Configurable high-
throughput decoder architecture for quasi-cyclic LDPC codes,” in 2008
42nd Asilomar Conference on Signals, Systems and Computers, Oct
2008, pp. 1137–1142.

[9] C. Marchand, L. Conde-Canencia, and E. Boutillon, “Architecture and
finite precision optimization for layered LDPC decoders,” in 2010 IEEE
Workshop On Signal Processing Systems, Oct 2010, pp. 350–355.

[10] A. Balatsoukas-Stimming, N. Preyss, A. Cevrero, A. Burg, and C. Roth,
“A parallelized layered QC-LDPC decoder for IEEE 802.11ad,” in 11th
Intl. New Circuits and Systems Conf. (NEWCAS), June 2013, pp. 1–4.

[11] T. T. Nguyen-Ly, V. Savin, K. Le, D. Declercq, F. Ghaffari, and
O. Boncalo, “Analysis and design of cost-effective, high-throughput ldpc
decoders,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, no. 3, pp. 508–521, March 2018.

[12] F. T. Leighton, “A graph coloring algorithm for large scheduling prob-
lems,” Journal of research of the national bureau of standards, vol. 84,
no. 6, pp. 489–506, 1979.

