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Abstract—In this paper we propose two memory efficient
a posteriori probability (APP) decoders for the decoding
of low-density parity-check (LDPC) codes. The proposed
decoders require memory that is linear in the number of
nodes in the Tanner graph of the code. This is a significant
saving compared to the existing APP decoder, which requires
memory that is proportional to the number of edges. We de-
rive the exact expressions for the memory and computational
complexity of the decoders in terms of the number of real
operations and basic memory units required for the decoding.

I. INTRODUCTION

Belief propagation (BP) is an iterative message-passing
algorithm for decoding Low Density Parity Check (LDPC)
codes, widely used in many systems [1]. Despite its good
error correction performance and capability of approach-
ing the Shannon limit, BP suffers from large memory
requirements for message processing and storage, propor-
tional to the number of edges in the Tanner graph of
the code [2]. Such large memory requirements, coupled
with additional hardware resources needed for the message
updating, make the BP less attractive in practical applica-
tions.

A posteriori probability (APP) decoder [3] is a sub-
optimal alternative to BP, in which the variable node
processing is simplified by allowing variables to send
messages in an intrinsic manner. As a result, in the APP
decoder, a message from a variable node corresponds to
a posteriori value used to estimate that variable. Although
this property admits a memory efficient implementation,
the advantage has not been recognized in the original paper
[3], where the APP decoder is represented in its parallel
form.

In this paper we propose two memory-efficient APP
decoders that require memory proportional to the number
of nodes in the Tanner graph of the LDPC code, rather
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than to the number of edges, as in the parallel APP
decoder proposed in [3]. The proposed algorithms use
the advantages of different types of message passing
scheduling, previously developed for the BP algorithm.
The first algorithm uses the flooding schedule over check
nodes proposed in [4] for BP decoding. It operates in a
semi-parallel way, by processing all the check nodes in a
parallel manner and variable nodes in a serial one. The
second one is based on the shuffled schedule proposed in
[5] and operates in fully serial manner. The computational
and memory complexity analyses of the original parallel
APP decoder, as well as of the two proposed decoders,
are derived.

The paper is structured as follows. In section II we
present the basic notions on LDPC codes and review the
parallel APP decoder. The memory efficient APP decoders
are derived in the section III and the complexity analysis
is derived.

II. APP DECODING OF LDPC CODES

In this section we introduce basic definitions of LDPC
codes theory and present the original parallel APP decoder
proposed in [3] .

A. LDPC codes

A regular LDPC code is a linear block code defined by a
generator matrix G of size pK,Nq and by a sparse parity-
check matrix H of size pM,Nq, with N “ K `M . The
codeword x “ px1, x2, . . . , xN q P t0, 1u

N is constructed
from the information sequence u “ pu1, u2, . . . , uKq P
t0, 1uK as x “ Gu. The codeword x satisfies HxT “ 0,
where xT denotes the transposed (column) vector. The
rate of the code is denoted R “ K{N . The Tanner
graph [2] of an LDPC code is a bipartite graph whose
adjacency matrix is the parity-check matrix of the code
H . It contains two types of nodes: a set of variable-nodes
N “ tv1, v2, . . . , vNu, corresponding to the N columns
of H , and a set of check-nodes M “ tc1, c2, . . . , cMu,
corresponding to the M rows of H . A variable-node vn
and a check-node cm are connected by an edge if and only
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if the corresponding entry of H is non-zero. The set of
indices of check-nodes connected to the variable-node vn
is denoted with Hpvnq and the set of indices of variable-
nodes connected to the check-node cm is denoted with
Hpcmq. In the case of regular LDPC codes cardinalities
of Hpvnq and Hpcmq are the same for all vn and cm,
and denoted with dv and dc, respectively. In the case of
regular codes, the rate of the code can be calculated as
R “ 1´ dv

dc
.

Let y “ py1, y2, . . . , yN q be the received sequence as
defined in [6]. The channel is defined by the probabilistic
model

ppx,yq9
N

ź

n“1

Prpyn|xnq
M
ź

m“1

1p
ÿ

nPN pmq

xnq

where Prpy|xq is the channel likelihood, 1 is the indicator
function and

ř

nPN pmq xn are modulo 2 sums determined
by the parity check matrix H .

.......... Code rate is defined as R “ K{N . ......

B. Parallel APP decoder

The goal of the decoding is to compute the a posteri-
ori probability Prpxn|yq, which is used for the decision
making on bit values. APP decoder originally proposed
in [3] computes the a posteriori probability in an iterative
message passing manner, by processing all the check and
variable nodes in parallel. In one half-iteration, messages
from check nodes are computed according to previously
computed (or initialized) values in variable nodes. After
that, all the variable nodes take incoming message at same
time and update its values, which completes one iteration.
Parallel APP decoder operates as follows.

Initialization: Variable-nodes are initialized to a pri-
ori values pγ1, γ2, . . . , γN q from the received sequence
py1, y2, . . . , yN q as

γ̃p0qn “ γn “
ppyn | xn “ 0q

ppyn | xn “ 1q
. (1)

Iterative processing:
1) Check-node processing: consists in computing the

check-to-variable messages µ
pkq
mÑn, for all check-

nodes m and their neighbor variable-nodes vn;

µpkqmÑn “
ð

kPN pmqzn
γ̃
pk´1q
k , (2)

where
Ð

iPN pmqzn
stands for the summation over the

set N pmqzn induced by the box-sum operation
defined as

x‘ y “ log
1` exey

ex ` ey
(3)

Algorithm 1: PARALLEL APP DECODER

Input: y “ py1, . . . , yN q P YN Ź received word
Output: x̂ “ px̂1, . . . , x̂N q P t0, 1u

N Ź estimated
codeword

Initialization:

1: for each tvnun“1,...,N do γn “ log
Prpxn “ 0|ynq

Prpxn “ 1|ynq
;

2: for each tvnun“1,...,N do γ̂n “ γn;

Iterative processing loop
3: for each tcmum“1,...,M do Ψm “ 0
4: for each vn P Hpcmq do Ψm “ Ψm ‘ γ̂n

5: for each tcmum“1,...,M do
6: for each vn P Hpcmq do µkÑm “ Ψm a γ̂n

7: for each tvnun“1,...,N do γ̂n “ γn
8: for each cm P Hpvnq do γ̂n “ γ̂n ` µ

pnq
kÑm

9: for each tvnun“1,...,N do x̂n “ p1´ signpγ̃nqq{2
10: if x̂ is codeword then exit the iteration loop

End iterative processing loop

2) A posteriori information update: consists in comput-
ing the a posteriori messages γ̂pkqn , for all variable-
nodes vn,

γ̃pkqn “ γn `
ÿ

mPMpnq

µpkqmÑn. (4)

3) Hard decision: Estimated values of sent bits, x̂ “
px̂1, x̂2, . . . , x̂N q, according to the rule: γ̃pkqn ą 0

then x
pkq
n “ 0, otherwise x

pkq
n “ 1. The decoder

stops when either x̂ is a codeword or a maximum
number of decoding iterations is reached.

Check to variable messages requires the computation of
all partial sums

Ð

kPN pmqzn γ̃
pk´1q
k , which can efficiently

be computed using the inverse operation for ‘ called
minus-box operator:

xa y “ log
1´ exey

ex ´ ey
(5)

It is easy to check that x‘yay “ x. Using the a operator,
the sum

Ψpkqm “
ð

kPN pmq
γ̃
pk´1q
k (6)

can be computed once per iteration and node, and all the
messages can be computed for all n P N pmq as

µpkqmÑn “ Ψpkqm a γ̂pk´1q
n . (7)
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III. MEMORY EFFICIENT APP DECODING

In this section we consider implementation aspects of
the APP decoder. First, we present parallel APP decoder
proposed in [3]. After that we propose two alternative
memory efficient variants, semi-parallel and serial APP
decoders. We derive the exact expressions for the memory
and computational complexity of the decoders in terms
of the number of real operations and basic memory units
required for the decoding.

A. Parallel APP decoder

In the parallel APP decoder proposed in [3], each edge
and each node of the Tanner graph uses its own processor
to perform computations. The pseudo-code for the parallel
decoder is given in Algorithm 1.

The computation of check sums Ψm is done in lines 3
and 4, with M processor for ‘ operation which works in
parallel. In accordance, ”for each loop” in the line 3 can
be performed at once and each of M processors performe
‘ addition in the line 4 for dv times.The check-to-variable
messages are computed in the lines 5 and 6, where the ”for
each loops” run over the all edges in the Tanner graph.
All of the dvN processors associated to the edges run in
parallel each of them performing a operation for once.
The computation of the a posteriori values γ̂n is done in
the lines 7 and 8. Similarly as for the check sums, we
need N processors which work in parallel and performe
real additions for dc times. The discussion is summarized
in the first row of Table I.

Let us discuss now the memory requirements of the
parallel implementation. During the computations, we
need M registers for storing the check-sums Ψm, dvN
registers for storing check-to variable messages µmÑn and
N registers for the estimated a posteriori values γ̂n. This
results in the total number of pdv`1qN `M registers, as
given in Table II.

In accordance, parallel APP decoder requires a memory
which is proportional to the number of edges in the Tanner
graph. In the following sections we propose two decoders
which require memory that is proportional to the number
of the nodes.

B. Semi-parallel APP algorithm

A semi-parallel APP decoder uses the flooding schedule
over the check nodes, proposed in [4] for BP decoding.
In the semi-parallel version the first half-iteration is done
in parallel, while the second one is processed in a serial
manner. The semi-parallel APP decoder is presented in
Algorithm 2.

In the same manner as in parallel decoder, each check
node uses its own processor to perform computations.
In accordance, ”for each loops” in the line 3 and 4 are
performed using M processors which runs in parallel and
each processor computes ‘ addition for dv times.

Algorithm 2: SEMI-PARALLEL APP DECODER

Input: y “ py1, . . . , yN q P YN Ź received word
Output: x̂ “ px̂1, . . . , x̂N q P t0, 1u

N Ź estimated
codeword

Initialization:

1: for each tvnun“1,...,N do γn “ log
Prpxn “ 0|ynq

Prpxn “ 1|ynq
;

2: for each tvnun“1,...,N do γ̂old
n “ γn;

Iterative processing loop
3: for each tcmum“1,...,M do Ψm “ 0
4: for each vn P Hpcmq do Ψm “ Ψm ‘ γ̂old

n

5: for each tvnun“1,...,N do γ̂new
n “ γn;

6: for each tcmum“1,...,M do
7: for each vn P Hpcmq do µmÑn “ Ψm a γ̂old

n

8: for each vn P Hpcmq do γ̂new
n “ γ̂new

n ` µmÑn

9: for each tvnun“1,...,N do γ̂old
n “ γ̂new

n

10: for each tvnun“1,...,N do x̂n “ p1´ signpγ̂nqq{2
11: if x̂ is codeword then exit the iteration loop

End iterative processing loop

Unlike the parallel decoder, the estimated a posteriori
values γ̂new

n are initialized to the channel values in the line
5 and updated during the serial processing of check nodes
in the second half-iteration, which is performed in the
lines 6–8. The updating is performed using dc processors
for the a and dc processors for real additions. During
the processing in one check node, all outgoing messages
from the check node are computed at once in the line 7.
After that all neighbors of the check node are updated
at once in the line 8. This procedure is performed for
all check nodes. As a result, at the end of the second
half iteration, the a posteriori values are the same as the
values computed in the parallel decoder. The computed
a posteriori values are saved in the line 9, and used in
the next iteration. In this way, computations are done
using M processors for ‘ operation, dc processors for
the a operation and dc processors for real additions. The
discussion is summarized in the second row of Table I.

Note that in semi-parallel APP decoder we do not need
to store the messages from all check nodes, but only the
messages from the processed one, which results in lower
memory complexity than in the parallel decoder. We need
M registers for storing the check-sums Ψm, N registers
for the estimated a posteriori values γ̂new

n , dc registers for
storing check-to variable messages µmÑn and N registers
for saved values γ̂old

n . This results in the total number of
M ` 2N ` dc registers, as given in Table II.
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` ‘ a

P` C` E` P‘ C‘ E‘ Pa Ca Ea

Parallel APP N dv dvN M dc dvN dvN 1 dvN

Semi-parallel APP dc M dvN M dc dvN dc M dvN

Serial APP 1 dvN dvN dv N dvN dv N dvN

TABLE I: Computational complexity of APP decoders. P˚ is number of processors, C˚ time for the performing of
all operations * if P˚ works in parallel, and E˚ “ P˚ ¨ C˚ the total number of * operations performed during one

iteration

Processors Memory Energy Throughput

Parallel APP pαmN `M ` dvNqm pdv ` 1qN `M dv ¨N ¨ E ¨Kpar N{Kparpαcdv ` dc ` 1qT

Semi-parallel APP pαmdc `M ` dcqm 2N ` 2dc `M dv ¨N ¨ E ¨Kpar N{KparpαcM ` dc `MqT

Serial APP pαm ` 2dvqm 2dv ` 1 dv ¨N ¨ E ¨Kpar N{KparpαcdvN ` 2NqT

TABLE II: Complexity of APP decoders.

Algorithm 3: SERIAL APP DECODER

Input: y “ py1, . . . , yN q P YN Ź received word
Output: x̂ “ px̂1, . . . , x̂N q P t0, 1u

N Ź estimated
codeword

Initialization:
1: for each tvnun“1,...,N do

γn “ log
Prpxn “ 0|ynq

Prpxn “ 1|ynq
!!!!!!;

2: for each tvnun“1,...,N do γ̂n “ γn;
3: for each tcmum“1,...,M do Ψm “

Ð

nPN pmq
γ̂n

Iterative processing loop

4: for each tvnun“1,...,N do
5: for each cm P Hpvnq do Ψm “ Ψm a γ̂n

6: γ̂n “ γn
7: for each cm P Hpvnq do γ̂n “ γ̂n `Ψm

8: for each cm P Hpvnq do Ψm “ Ψm ‘ γ̂n

9: for each tvnun“1,...,N do x̂n “ p1´ signpγ̂nqq{2
10: if x̂ is codeword then exit the iteration loop

End iterative processing loop

C. Serial APP algorithm
A serial APP decoder is based on schedule proposed

decoding [5] and [7] for BP decoding. The decoder is

presented in Algorithm 3.
In the serial APP decoder variable nodes are processed

one by one. The check sums are initialized in the line 3,
and after that updated during the whole iterative process.
After the update in the line 5, the values Ψm become the
messages µmÑn to the proceeded variable node, which
are used for the variable node updating in the lines 6 and
7. The newly computed a posteriori values are after that
added to Ψm in the line 8, so that Ψm again correspond
to the check sums.

Note that, unlike for the semi-parallel decoder, in the
serial one newly computed a posteriori values are used
immediately after computation, for the computations of
all subsequent a posteriori values in the same iteration. In
the case of BP decoder, it has already been known that
this updating improves the convergence [5], [7].

During the processing of one variable node, the decoder
uses only one processor which performs dv real additions,
and dv processors for the ‘ and a operations which
do updates at once. After that, the processors become
available for the processing of the next variable node.
This is summarized in the third row of Table I. Unlike
the semi-parallel decoder, the message are stored in the
check-sum registers and the copies of a posteriori values
are not made, which results in total number of M ` N
registers for storing the values Ψm and γ̂n, as shown in
Table II.

D. Throughput analysis

Let Ed denote the total number of d operations which
should be performed in one iteration (d may stand for `,
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‘ or a). If the computations are performed using using Pd

processors which work in parallel and each of them runs
Cd times per one iteration, than we have Ed “ Pd Cd.

Note that ` operation are performed with the processors
which are associated to variable nodes, ‘ operation is
performed with the one associated to check nodes and ‘

with the one associated with edges of the Tanner graph.
Also note that, in one iteration, ‘ processors can start
running only if all ` has finished the computation, and
a....

In accordance, the average time, T , needed for finishing
one iteration can be computed as

T “ C` t` ` C‘ t‘ ` Ca ta (8)

where td stands for time needed for performing d op-
erations. Although, ‘ and a requires higher time, an
efficient and very accurate approximation have previously
been proposed, and in our considerations we consider that
all operations are performed for same time t for all the
operations, in one time clock f “ 1{t so that

T “ pC` ` C‘ ` Caq t “
C

f
. (9)

with C “ T {t “ C` ` C‘ ` Ca.
If we introduce an effective processing power P , so that

E “ P C, we have

P “
E

C
“

E
E`

P`
`

E‘

P‘
`

Ea

Pa

(10)

and
C

N
“

E

N P
“

3dv
P

(11)

In each iteration in each of N variable nodes, ` oper-
ation is performed for dv times, which is E` “ N dv in
total. In similar manner we get E‘ “ Ea “M dc “ N dv
i.e. E` “ E‘ “ Ea “

E
3 :

P “
3

1
P`
` 1

P‘
` 1

Pa

(12)

The average number of iterations needed I depends of
the type of the decoder. Since the parallel and semi-parallel
APP decoder yields exactly the same output after each
iteration, their average iterations numbers are the same,
Ipar “ Is´par. The serial decoder has better convergence,
and the convergence increasing depends on the type of
code considered. We use the assumption from [8] by which
Iser “ 1{2 Ipar. Finally, the total average time needed for
the decoding of of one code-word can be expressed as
T Ipar for the parallel and semi-parallel decoder and as
T Ipar

Throughput of a decoder is defined as a number of
information bits per time unit which can proceeded:

D “
K

T I
“
R N

T I
“
R N f

C I
“
R N f P

E I
“
R f P

3 dv I
“ .

(13)

D “
R f

dv I
¨

1
1
P`
` 1

P‘
` 1

Pa

. (14)

IV. CONCLUSION

Two memory efficient APP algorithms for decoding
of LDPC codes were presented. The decoders are based
on semi-parallel and serial node processing and require
memory that is linear in the number of nodes in the Tanner
graph corresponding to the LDPC code. The decoders have
the same computational complexity as the parallel version
[3] which requires memory that is proportional to the
number of edges. We provided precise expressions for the
memory and computational complexity of the decoders in
terms of the number of real operations and basic memory
units required for the decoding. The dependency of the
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