
Noisy In-Memory Recursive Computation with
Memristor Crossbars

Elsa Dupraz† and Lav R. Varshney‡
† IMT Atlantique, Lab-STICC, UBL

‡ University of Illinois at Urbana-Champaign

Abstract—This paper considers iterative dot-product computa-
tion implemented on in-memory memristor crossbar substrates.
To address the case where true memristor conductance values
may differ from their target values, it introduces a theoretical
framework that characterizes the effect of conductance value
variations on the final computation. For simple dot-products,
the final computation error can be approximated by a Gaussian
distribution; the mean and variance values of the corresponding
Gaussian distribution are provided. For iterative dot-product
computation, recursive expressions are derived for the means
and variances of the successive computation outputs. Experiments
verify the accuracy of the proposed analysis on both synthetic
data and on images processed with memristor-based principal
component analysis.

I. INTRODUCTION

The Von Neumann architecture in computer engineering
separates memory from computation and has been a standard
paradigm for decades. Yet it introduces the key communication
challenge of moving data back and forth between memory
and compute, a problem often known as the memory wall. In
order to continue scaling laws of computational performance,
there has been a move to break this memory wall and use in-
memory computation [1], [2]. To perform computation directly
within memory, several memristor-based architectures have
been proposed, but the crossbar architecture has emerged as
quite prominent since it naturally leads to several important
computational kernels from workloads in artificial intelligence
and elsewhere [3]. In addition to this new architectural ap-
proach for in-memory computing, there has also been interest
in using novel low-power device technologies for implementa-
tion, such as spintronics and ferroelectrics. Unfortunately, such
nanoscale devices are often noisy [2], and so there is a need
to understand the informational properties of noisy in-memory
computing using memristor crossbar architectures.

As noted, memristor crossbars can be used to directly im-
plement numerous key computational kernels [4], and there are
even programming languages being developed for them [5]. As
an example, memristor crossbars can be used for Hamming
distance computation [6], [7]. More generally, they can be
used for analog dot-product computation in memory [8], [9].
Dot-product computation in memory is useful for deep neural
networks [3], sparse coding [10], K-means clustering [11],
and for solving optimization problems such as linear and

This work was supported in part by the “Make our Planet Great Again”
Initiative of the Thomas Jefferson Fund and by grant ANR-17-CE40-0020 of
the French National Research Agency ANR (project EF-FECtive).

quadratic programming [9]. Memristor crossbar-based dot-
product computation is especially efficient since it is realized
in only one clock cycle.

In this paper, we focus on dot-product computation in
memory, which covers a wide range of applications [12], [13].
Recall that the internal conductance value of a memristor
depends on the current that flows through the memristor,
an electronic device property useful for computation [1]. In
order to perform the computation, vector coefficients are given
by input voltage values, and internal conductance values of
the memristors must be set to values that depend on the
coefficients of the matrix involved in the computation.

However, as described in [9], the true conductance values
may differ from the target values. These variations can be seen
as noise introduced in the computation, and they may affect
the final computation result. The effect of these variations was
theoretically studied in [7] in the case of Hamming distance
computation. It was also studied in [9] for dot-product compu-
tation, but only from simulations. Therefore, the objective of
this paper is to introduce a theoretical framework that allows
us to characterize the effect of conductance value variations
on the final computation. In this sense, we are concerned with
intrinsic robustness, rather than coding-theoretic approaches to
introduce robustness via redundancy [14].

In this paper, we model both the conductance values and
the voltage values as independent random variables. We show
that, for a large class of distributions for both the conductances
and input voltages, the final computation error can be approxi-
mated by a Gaussian distribution, and we provide the mean and
variance values of the corresponding Gaussian distribution.

We then consider the extended problem of successive dot-
product computations, which may arise in successive layers
of neural networks and which allows for fixed-point com-
putation and for solving linear and quadratic optimization
problems [9]. Here, we provide recursive expressions for the
means and variances of the successive computation outputs,
a little reminiscent of the extended Kalman filter and of
the Gaussian approximation to density evolution [15]. These
recursive expressions are obtained from second-order Taylor
expansions of the means and variances. Interestingly, we show
that the means are given by the exact computation outputs,
and as a result, the variances provide the mean-squared errors
between the noisy memristor-based computation and the exact
computation result. Our experiments verify the accuracy of
the proposed expressions on synthetic data and show the

..
.

...

...

...

..
.

..
.

Fig. 1. Electronic model for an N ×N memristor crossbar structure

influence of conductance variations on a practical application:
image denoising from a memristor-based Principal Component
Analysis (PCA).

Throughout the paper, uppercase letters denote random
variables, and lowercase letters denote their realizations. Bold
letters are used to denote vectors. Finally, J1, NK denotes the
set of integers between 1 and N .

II. COMPUTATION IN MEMORY

In this section, we describe how memristor crossbars can be
used for dot-product computation in memory. The electronic
model for an N ×N memristor crossbar structure is shown in
Figure 1. In this model taken from [9], a memristor connects
each horizontal Word-Line (WL) to each Vertical Bit-Line
(BL). We use gij to denote the conductance of the memristor
between WLi and BLj . We also use ui to denote the input
voltage value on WLi, and xj to denote the output voltage
on BLj . The value of xj is measured through a pull-down
resistor of conductance g0j . We denote u = [u1, . . . , uN] the
input voltage vector, and x = [x1, . . . , xN] the output voltage
vector.

According to [9], output voltage xj is related to input
voltages u1, . . . , un by the expression

xj =

N∑
i=1

gij∑N
k=0 gkj

ui. (1)

Equation (1) can also be restated in matrix form as

x = uG, (2)

where the matrix G = {gij} is of size N × N . Therefore, it
suffices to adjust the gij conductance values and the input
voltage vector u in order to realize a given dot-product
computation. This computation is very efficient in terms of
latency as all the operations are performed in parallel.

Many machine learning algorithms can be decomposed so as
to use memristor crossbars in their computations [9]–[11]. In
the proposed architectures, memristor crossbars can be used
iteratively by setting output values xj as new inputs ui for
the next computation iteration. In such iterative computation,
either the same memristor conductance values gij are used
from iteration to iteration, or these values are rewritten in
order to perform a different dot-product computation in each
iteration.

However, dot-product computation from memristor cross-
bars suffers from several drawbacks [9]. First, all the conduc-
tance values gij must be non-negative. In order to deal with
this issue, a simple solution consists of using two crossbars
(one for positive coefficients and one for negative coefficients).
In addition, the true conductance value gij may vary from the
target value, which may introduce errors in the computation.
The objective of this paper is to address this second issue. In
the following, we first consider noisy dot-product computation.
We then investigate the case of successive noisy dot-product
computations.

III. NOISY DOT-PRODUCT COMPUTATION

In order to study the influence of variations in conduc-
tance values gij on the final computation, we model these
conductance values as random variables denoted as Gij . In
this section, in order to be able to consider a wide range
of probability distributions for the Gij , we only make a few
assumptions on these random variables.

We assume that the random variables Gij are independent,
but not necessarily identically distributed, and that their first
and second moments exist. Formally, this is given by the
conditions E[|Gij |] < ∞ and E[|Gij |2] < ∞. We further
assume that Gij has mean gij , and we denote E[Gij] = gij ,
Var(Gij) = σ2

ij . In [7], [9], it is assumed that each random
variable Gij follows a Gaussian distribution N (gij , σ

2
ij) with

mean gij and variance σ2
ij . This model can be seen as a

particular case of our analysis.
In addition, in order to take into account potential variations

in previous computations, we also describe the input voltages
as random variables Ui. Here again, we assume that the Ui

are independent, but not necessarily identically distributed, and
that the first and second moments of each Ui exist. We further
denote E[Ui] = ui and Var(Ui) = γi. Note that in [7], [9], the
input voltages ui were considered as deterministic quantities.

The objective of this section is to propose approximations of
the probability distributions of the random variables Xj that
represent the outputs of the noisy dot-product computation.
The Xj are obtained from (1), by replacing the deterministic
quantities gi,j and ui by the corresponding random variables
Gi,j and Ui.

A. Approximate distribution for Xj

Let us now prove a theorem that allows us to derive
approximate distribution for a given output value Xj .

Theorem 1: Consider two sequences (Ui)i∈J1,NK and
(Gij)i∈J0,NK of independent random variables and assume that

all the random variables Ui, Gij admit finite first and second
moments. If the sequence (UiGij)i∈J1,NK satisfies Lindeberg’s
condition (see [16]), and if

αj = lim
N→∞

δ2
j

N2
6= 0, (3)

where δj =
∑N

i=0 gij , then

N2

√
vj

(Xj − xj)
d⇒ N

(
0,

1

α2
j

)
(4)

where d⇒ stands for the convergence in distribution, and

vj = E

(N∑
i=1

δjUiGij −∆juigij

)2
 , (5)

with ∆j =
∑N

i=0Gij .
Proof: We first express

Xj − xj =

∑N
i=1 (δjUiGij −∆juigij)

∆jδj
(6)

Since E[|Gij |] <∞ for all i, j, then, by the weak law of large
numbers,

1

N2
∆jδj

P⇒ αj , (7)

where P⇒ stands for the convergence in probability. In addition,
since E[(UiGij)

2] <∞ and since the Lindeberg’s condition is
satisfied, we apply the central limit theorem in order to show
that

1
√
vj

N∑
i=1

(δjUiGij −∆juigi,j)
d⇒ N (0, 1). (8)

To finish, we apply Slutsky’s Theorem [17, Page 19] from (7)
and (8) in order to show (4).

First note that condition (3) in Theorem 1 may be verified
in most cases since the conductance values gi,j are all greater
than 0. It only suffices to verify that the series (

∑
gij) is not

convergent. Then, Theorem 1 permits us to conclude that the
probability distribution of a computation output Xj can be
approximated by a Gaussian distribution

N

(
xj ,

vj
α2
jN

4

)
with parameters αj and vj given in the theorem. Interestingly,
this shows that whatever the distribution of the random vari-
ables Ui and Gij , the random variable Xj is centered around
the true value xj given in (1). In addition, the obtained values
of vj can be used to approximate the mean-squared error
between Xj and xj as

E[(Xj − xj)2] ≈ vj
α2
jN

4
.

Finally, although the convergence to a Gaussian distribution
may require a large value of N , we will show in our simula-
tions that the Gaussian distribution (8) approximates well the
behavior of Xj even for medium values of N .

In closing, note that the conditions given in the theorem
(finite moments, Lindeberg’s condition) are satisfied by a wide
range of distributions, including the case described in [7], [9]
where Gij is Gaussian and Ui is deterministic. In the next
part, we provide the expression of vj in (5) in the case where
the inputs Ui are deterministic, and in the case where they are
random variables. The provided expressions only depend on
the first and second moments of the random variables Ui, Gij ,
and therefore work for the Gaussian case considered in [7],
[9].

B. Expressions of vj
In this section, we provide the expression of vj for the case

where Ui is deterministic and equal to ui, and for the case
where Ui is random with mean ui.

We first assume that the Ui are deterministic. In this case,
vj can be expressed as

vj =

N∑
i=1

u2
i

(
δ2
jσ

2
i + g2

ijΓj − 2δjgijσ
2
ij

)
+

N∑
i=1

∑
i′ 6=i

uiui′
(
Γjgijgi′j − δj

(
σ2
ijgi′j + σ2

i′jgij
))

(9)

where Γj =
∑n

i=0 σ
2
ij . Note that, in the particular case where

Gij is Gaussian, the distribution of Xj can be approximated
from [18, equation (9)] that provides an approximate probabil-
ity distribution in analytical form for the ratio of two Gaussian
random variables. In the simulation section, the approximate
probability distribution of [18, equation (9)] will be compared
with the approximate Gaussian distribution given in (8).

We now consider the case where both Gij and Ui are
random variables.In this case, vj can be expressed as

vj =

N∑
i=1

δ2
j (γ2

i + u2
i)(σ2

ij + g2
ij) + u2

i g
2
ij(Γj − δ2

j)− 2δjgiju
2
iσ

2
ij

+

N∑
i=1

∑
i′ 6=i

uiui′
(
Γjgijgi′j − δj

(
σ2
ijgi′j + σ2

i′jgij
))
. (10)

The Gaussian approximation and the expressions of vj given
in this section hold for a one-shot dot-product computation,
since they consider independent Ui. However, it is worth not-
ing that two outputs Xj , X ′j are not statistically independent,
since they are computed from the same inputs Ui. In the
following, we consider iterative dot-product computation in
which the outputs of one iteration serve as inputs for the next
iteration.

IV. NOISY ITERATIVE DOT-PRODUCT COMPUTATION

We are now interested in performing iterative dot-product
computation by successively applying (2) with different ma-
trices G(1),G(2), · · · ,G(T) in order to compute a vector

y = G(T)G(T−1) · · · G(1)u. (11)

Such computation can be used for instance to solve linear and
quadratic programming problems or to perform a PCA [9].

A particular case arises when G(t) = G for all t, which
corresponds to fixed point computation. In what follows, we
denote x(0) = u, x(T) = y, and

x(t) = G(t)x(t−1).

We use X(t) to denote the random vectors that correspond to
each x(t).

As for the simple dot-product computation considered in
Section III, it is reasonable to assume that the components
X

(0)
j of the initial vector X(0) are independent. However, after

applying the first matrix G(1), the components X(1)
j of X(1)

are not independent anymore. As a result, the assumptions
of Theorem 1 are not satisfied when we consider the general
term X(t) = G(t−1)X(t−1). In particular, the Central Limit
Theorem used in the proof of Theorem 1 does not apply to
a sum of dependent random variables, unless some restrictive
assumptions are made [16]. In the following, as an alternative,
we provide approximated expressions for the first and second
moments of the X(t)

j , by considering the second-order Taylor
expansions of these moments. Throughout this section, in
order to obtain accurate Taylor expansions, we assume that
condition (3) of Theorem 1 still holds.

A. Second-order Taylor expansions of the moments

In this section, we consider dependent random inputs
X

(t−1)
i (t > 1) such that for all i, i′ ∈ J1, NK the co-

variance between X
(t−1)
i and X

(t−1)
i′ exists and is denoted

Cov(X
(t)
i , X

(t)
i′) = γ

(t)
ii′ . We also denote µ(t−1)

i = E[X
(t−1)
i]

and Var(X(t−1)
i) = γ

(t−1)
i . We give three propositions that

provide the Taylor expansions of the means, variances, and
covariances of the random outputs X(t)

j . These propositions
will allow us to track the evolution of the moments of the
successive random vectors X(t).

Proposition 1: The second-order Taylor expansion of the
mean µ(t)

j of X(t)
j is given by

µ
(t)
j =

N∑
i=1

µ
(t−1)
i g

(t)
ij

δ
(t)
j

− Θj

(δ
(t)
j)2

+
ΓjΛj

(δ
(t)
j)3

+O

(
1

(δ
(t)
j)3

)
(12)

where

Θj =

N∑
i=1

µ
(t−1)
i σ

2(t)
ij (13)

Λj =

N∑
i=1

µ
(t−1)
i g

(t)
ij , (14)

and O(·) is the Bachmann–Landau notation.
Proof: Directly comes from the approximated expression

of [19] for the mean of a ratio, derived by considering the
second-order Taylor expansion of the ratio.

From Proposition 1, if E[X
(t−1)
i] = x

(t−1)
i and if condi-

tion (3) is verified, we have that limN→∞ µ
(t)
j = x

(t)
j . By

induction, this shows that when N is large enough, the random
output X(t)

j is centered around its true value x(t)
j , as was the

case for dot-product computation considered in Section III.

However, in the following, we keep the second-order terms in
order to improve the accuracy of the approximation of µ(t)

j

when N is not too large.
Proposition 2: The second-order Taylor expansion of the

variance γ(t)
j of X(t)

j is given by

γ
(t)
j =

(
Θj

δ
(t)
j

)2

+
Ψj

(δ
(t)
j)2

−2ΛjΘj

(δ
(t)
j)3

+
3Θ2

jΓj

(δ
(t)
j)4

−(µ
(t)
j)2+O

(
1

(δ
(t)
j)3

)
(15)

where

Ψj =

N∑
i=1

(
(µ

(t−1)
i)2σ

2(t)
ij + γ

(t−1)
i σ

2(t)
ij

)
+

N∑
i=1

N∑
i′=1

gijgi′jγ
(t−1)
i,i′ .

(16)
Proof: We express Var(Xj) = E[X2

j]−E[Xj]
2 and denote

X2
j = V 2

j /W
2
j . We then use the second-order Taylor expan-

sion of a function f(v, w) = v2/w2 and apply the expectation
to obtain E[X2

j]. Then, E[Xj]
2 is given by Proposition 1.

Note that in [19], only the first-order Taylor expansion of the
variance of a ratio was provided.

Proposition 3: The second-order Taylor expansion of the
covariance γ(t)

jj′ of X(t)
j , X(t)

j′ , with j 6= j′, is given by

γ
(t)
jj′ =

N∑
i=1

N∑
i′=1

λijλi′j′γ
(t−1)
i,i′ +O

(
1

(δ
(t)
j)3

)
(17)

where

λij =
gij

δ
(t)
j

−
σ

2(t)
ij

(δ
(t)
j)2

+
Γjgij

(δ
(t)
j)3

(18)

and λi′j′ is obtained by replacing indices i,j with i′,j′ in (18).
Proof: We have that

γ
(t)
jj′ =

N∑
i=1

N∑
i′=1

E

[
G

(t)
ij

∆
(t)
j

]
E

[
G

(t)
i′j′

∆
(t)
j′

]
γ

(t−1)
ii′ . (19)

We then replace E
[
G

(t)
ij

∆
(t)
j

]
and E

[
G

(t)

i′j′

∆
(t)

j′

]
by their second-order

Taylor expansions from [19].
For finite N , we have that γ(t)

jj′ 6= 0, which shows the
statistical dependency between outputs X(t)

j and X(t)
j′ .

The above three propositions allow us to track the evolution
of the means, variance, and covariances of output components
over iterations. It is worth noting that the expressions of the
moments at time instant t only depend on the expressions of
the moments at time instant t − 1. We now present simula-
tion results that aim to verify the accuracy of the proposed
expressions.

V. SIMULATION RESULTS

In this section, we describe our simulation results which
aim to verify the accuracy of the proposed approximations.
We started with the dot product computation described in
Section III. We set N = 1000, and generated random values
of gij , Ui, σ2

ij according to uniform distributions. Then, we
generated K = 10000 samples Xj . We plotted the histogram
of these samples, and superimposed both the approximate

4.8 4.9 5 5.1 5.2
0

2

4

6

8

10

12

14

xj

f
Histogram of Xj
Gaussian Approximation
Density Approximation of [18]

Fig. 2. Comparison of the histogram of the Xj together with the two ap-
proximated probability distributions. The Gaussian approximation and Density
approximation curves are superimposed.

2 4 6 8

10- 25

10- 20

10- 15

10- 10

10- 5

Iteration Number

Va
ria

nc
e

Empirical, N = 256
Gaussian approximation, N = 256
Taylor expansion, N = 256
Empirical, N = 512
Gaussian approximation, N = 512
Taylor expansion, N = 512
Empirical, N = 1024
Gaussian approximation, N = 1024
Taylor expansion, N = 1024

Fig. 3. Comparison of approximated variance expressions (Gaussian approx-
imation, Taylor expansion) with empirical variance

distribution of [18] and the Gaussian distribution obtained
from Theorem 1. The results are represented in Figure 2.
We observe that the two approximations are superimposed
and close to the histogram. This allows us to claim that the
proposed Gaussian approximation accurately represents the
probability distribution of the outputs (formal statistical tests
are omitted for brevity).

We then considered noisy recursive computation described
in Section IV. We set T = 8 and generated both input values
Ui and 8 different matrices G(t) at random. We considered
three different values K = 256, K = 512, and K = 1024. In
each case, we measured the empirical means and variances at
each iteration. We then computed the successive theoretical ap-
proximated means and variances given in Propositions 1 and 2.
For the sake of comparison, we also computed the successive
Gaussian parameters obtained from Theorem 1. The results are
represented in Figure 3 for the variances. We first observe that,
except for the first few iterations, the Gaussian approximation
does not allow us to accurately predict the empirical variance.
On the contrary, the approximated variances obtained from

3 6 9 12 15

3

6

9

12

15

Original image

3 6 9 12 15

3

6

9

12

15

Noisy image

3 6 9 12 15

3

6

9

12

15

Standard PCA

3 6 9 12 15

3

6

9

12

15

Mem. PCA (σ=0.1)

3 6 9 12 15

3

6

9

12

15

Mem. PCA (σ=1)

3 6 9 12 15

3

6

9

12

15

Mem. PCA (σ=2)

Fig. 4. Contours of original image, noisy image, and first component PCA
obtained from standard PCA and from memristor-based PCA with different
noise variances σ2. We considered 10 images of size 16×16 with amplitude
noise.

Proposition 2 are close to the empirical variances, for most
iterations. We observe that after 5 iterations, the approximated
variance saturates to a given value around 10−18. This is
probably due to numerical errors, because all the involved
terms become very small.

Finally, we considered a practical application that is
memristor-based PCA. We considered an original image of
size 16 × 16, represented in Figure 4. We then generated 10
noisy versions of this image, where the noise is given by
Gaussian random amplitudes. We implemented the memristor-
based PCA proposed in [9] and applied it to the 10 images. We
considered different variances σ2 = 0.01, σ2 = 1, and σ2 = 4
for the memristor conductance values Gij . Figure 4 shows the
obtained first principal components for standard PCA and for
memristor-based PCA with the different noise levels. We see
that a low level of noise given by σ2 = 0.01 produces a result
close to standard PCA, while higher variance values degrade
the performance.

VI. CONCLUSION

Understanding the properties and limits of noisy computing
is becoming more and more important, now that nanoscale
beyond-CMOS devices are being used in computer systems
that are, themselves, no longer constructed according to the
Von Neumann architecture. In this work, we have considered
the key computational kernel of iterative dot-products, which
arises in numerous important applications that require low
energy and low latency. In some sense generalizing the work
of Chen, Schoeny, and Dolecek [7], here we have developed
theoretical arguments to be able to track the error in itera-
tive dot-product computation and shown a kind of inherent
robustness.

In future work, we intend to study other key computational
problems in noisy memristor crossbar architectures, such as
shortest path computation [20].

REFERENCES

[1] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, p. 80, 2008.

[2] N. R. Shanbhag, N. Verma, Y. Kim, A. D. Patil, and L. R. Varshney,
“Shannon-inspired statistical computing for the nanoscale era,” Proceed-
ings of the IEEE, vol. 107, no. 1, pp. 90–107, 2018.

[3] S. Jain, A. Ankit, I. Chakraborty, T. Gokmen, M. Rasch, W. Haensch,
K. Roy, and A. Raghunathan, “Neural network accelerator design with
resistive crossbars: Opportunities and challenges,” IBM J. Res. Dev.,
vol. 63, no. 6, p. 10, Nov./Dec. 2019.

[4] R. Gharpinde, P. L. Thangkhiew, K. Datta, and I. Sengupta, “A scalable
in-memory logic synthesis approach using memristor crossbar,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26,
no. 2, pp. 355–366, 2017.

[5] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S.
Williams, P. Faraboschi, W. Hwu, J. P. Strachan, K. Roy, and D. S.
Milojicic, “PUMA: A programmable ultra-efficient memristor-based
accelerator for machine learning inference,” in Proc. 24th Int. Conf. Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS ’19), Apr. 2019, pp. 715–731.

[6] Y. Cassuto and K. Crammer, “In-memory Hamming similarity compu-
tation in resistive arrays,” in 2015 IEEE International Symposium on
Information Theory (ISIT), 2015, pp. 819–823.

[7] Z. Chen, C. Schoeny, and L. Dolecek, “Hamming distance computation
in unreliable resistive memory,” IEEE Transactions on Communications,
vol. 66, no. 11, pp. 5013–5027, 2018.

[8] R. M. Roth, “Fault-tolerant dot-product engines,” IEEE Transactions on
Information Theory, vol. 65, no. 4, pp. 2046–2057, 2018.

[9] S. Liu, Y. Wang, M. Fardad, and P. K. Varshney, “A memristor-based
optimization framework for artificial intelligence applications,” IEEE
Circuits and Systems Magazine, vol. 18, no. 1, pp. 29–44, 2018.

[10] P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W. D. Lu, “Sparse
coding with memristor networks,” Nature Nanotechnology, vol. 12,
no. 8, p. 784, 2017.

[11] Y. Jeong, J. Lee, J. Moon, J. H. Shin, and W. D. Lu, “K-means data
clustering with memristor networks,” Nano letters, vol. 18, no. 7, pp.
4447–4453, 2018.

[12] I. Nahlus, E. P. Kim, N. R. Shanbhag, and D. Blaauw, “Energy-efficient
dot product computation using a switched analog circuit architecture,”
in Proc. 2014 Int. Symp. Low Power Electronics and Design (ISLPED
’14), Aug. 2014, pp. 315–318.

[13] N. C. Wang, S. K. Gonugondla, I. Nahlus, N. R. Shanbhag, and E. Pop,
“GDOT: A graphene-based nanofunction for dot-product computation,”
in Proc. 2016 IEEE Symp. VLSI Technology, Jun. 2016.

[14] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Advances
in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc.,
2016, pp. 2100–2108.

[15] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-
product decoding of low-density parity-check codes using a Gaussian
approximation,” IEEE Trans. Information Theory, vol. 47, no. 2, pp.
657–670, Feb. 2001.

[16] J.-M. Bardet, P. Doukhan, G. Lang, and N. Ragache, “Dependent linde-
berg central limit theorem and some applications,” ESAIM: Probability
and Statistics, vol. 12, pp. 154–172, 2008.

[17] R. J. Serfling, Approximation Theorems of Mathematical Statistics. John
Wiley & Sons, 2009, vol. 162.

[18] N. S. Pillai, X.-L. Meng et al., “An unexpected encounter with cauchy
and lévy,” The Annals of Statistics, vol. 44, no. 5, pp. 2089–2097, 2016.

[19] H. Seltman, “Approximations for mean and variance of a ratio,” unpub-
lished note, 2012.

[20] Z. Ye, S. H. M. Wu, and T. Prodromakis, “Computing shortest paths
in 2d and 3d memristive networks,” in Memristor Networks. Springer,
2014, pp. 537–552.

