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Abstract—This paper considers the optimization of the
energy consumption of LDPC decoders. For a given pro-
tograph, two models are introduced to approximate the
energy consumption of a quantized Min-Sum decoder. The
first model takes into account the number of operations
performed by the decoder, the second model considers
the number of bits that are written into memory. An
optimization problem is then formulated to minimize the
decoder energy consumption with respect to the protograph
and the number of iterations, while satisfying a given
performance criterion. Finally, an optimization method
based on Differential Evolution is proposed.

I. INTRODUCTION

Low-density parity-check (LDPC) [1], [2] are known
to be capacity-approaching error-correction codes, and
they were retained in the 5G standardization process.
In addition to the decoding performance and the trans-
mission power, the decoding energy consumption can
be considered as a design criterion which was taken into
account only recently [3]. In this case, the objective is to
find the best compromise between decoding performance
and energy consumption.

In [4], two decoding energy consumption models
are introduced. The first model considers the energy
consumed in each variable and check node for message
computation. The second model evaluates the energy
consumed by wires in the decoder. In both models,
energy consumption depends on the code length and on
the number of edges connected to each variable and
check node. However, in [4], the energy required by
access to memory is not taken into account. Recently, [5]
introduced an energy minimization method for Finite
Alphabet Iterative Decoders (FAIDs) of LDPC Codes.
FAIDs process discrete messages and the goal of [5] is to
minimize the size of message alphabets in order to save
energy while maintaining a good level of performance.
The approach of [5] reduces both memory and wire
energy consumption.

While previous works [4] and [5] optimize the de-
coder, the code itself can play an important role in energy
consumption. Therefore, [6], [7] seek to minimize the
decoding complexity for a target decoding performance
by a numerical optimization of the code rate and irregular
degree distributions. Both works [6], [7] assume an
infinite codeword length, and [6] considers the Gallager
B decoder while [7] studies the Sum-Product decoder.

Alternatively, in this paper, we consider quantized
Min-Sum decoders for their easy hardware implemen-
tation [8]. While previous works [4]–[7] study LDPC
codes constructed from regular and irregular degree
distributions, we consider codes constructed from pro-
tographs [9], as they allow for the design of hardware-
friendly quasy-cyclic LDPC codes with good perfor-
mance [10]. Our objective is to design protographs
that minimize the decoder energy consumption for a
target decoding performance. Since not only the decoder
energy consumption but also its performance depend on
the codeword length, our method relies on the approach
of [11] to evaluate the finite-length decoder performance.

We introduce two models that estimate the energy
consumption of a quantized Min-Sum decoder. The first
model uses the average number of operations required
for decoding a codeword as a proxy for energy con-
sumption. The second model considers the total number
of bits that must be written in memory during the
decoding process. We then formulate an optimization
problem that corresponds to minimizing the decoder en-
ergy consumption while satisfying a given performance
criterion. In this formulation, the energy consumption
is minimized with respect to the code and decoder
parameters (protograph, number of iterations, etc.) that
participate to the energy models. We then propose an
optimization method to solve this problem, using the
Differential Evolution [12] genetic algorithm.

The rest of the article is organized as follows. In
Section II, we review LDPC codes construction and
decoding. In Section III, we present the finite-length
density evolution method. In Section IV, we describe the
two energy estimation models. In Section V, we present
the optimization problem. Simulation results are shown
in Section VI.

II. LDPC CODES

We assume that each codeword bit is transmitted over
an additive white Gaussian noise (AWGN) channel using
binary phase-shift keying (BPSK) modulation. The i-th
received value yi is thus given by yi = xi + bi where
bi are independent centered Gaussian random variables
with variance σ2 and where xi ∈ {−1, 1} is the i−th
modulated coded bit. The channel signal-to-noise ratio
(SNR) is given by ξ = 1/σ2.



A. LDPC Code Construction

We consider an LDPC code construction from a
protograph [13]. A protograph is specified by a matrix
S of size m × n whose elements indicate the number
of edges connecting the respective variable and check
nodes of the Tanner graph [14] associated with S. Let
dvi be the total number of edges connected to a variable
node of type i ∈ {1, · · · , n} (variable node degree) and
dcj the total number of edges connected to a check node
of type j ∈ {1, · · · ,m} (check node degree).

A length-N LDPC code of rate R can be constructed
from a protograph by applying a “copy-and-permute”
operation on the protograph. The protograph is copied
Z times, where Z = N/n is called the lifting factor. The
parity check matrix H (which will be assumed full-rank
hereafter) is then obtained by interleaving the edges. The
degree distribution of the LDPC code is the one of the
protograph, provided by the entries in S.

Hereafter, a two-steps lifting procedure described in
[10] will be applied to come up with quasy-cyclic LDPC
codes where the amount of short cycles is minimized.
The quasi-cyclic nature of LDPC codes will allow to
design hardware-friendly decoder implementations.

B. Quantized Min-Sum Decoder

In the quantized Min-Sum decoder [15]–[17], we use
messages between −Q and Q, with a quantization step-
size s. The quantization function is given by

∆(x) = sgn(x) min

(
Q, s

⌊
|x|
s

+
1

2

⌋)
, (1)

where sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if x < 0.
For implementation efficiency, we usually choose Q =
2q−1−1, where q is the number of bits used to represent
messages. In the log-likelihood ratio (LLR) domain, the
received value y becomes

ri = α log

(
P (xi = 1|yi)
P (xi = −1|yi)

)
=

2αyi
σ2

, (2)

where α is a scaling parameter to be optimized later on.
In the Min-Sum decoder, the message sent from

variable vi to check cj is denoted β`i at iteration ` and
is calculated by:

β
(`)
i = ∆(ri) +

∑
j∈Nvi

γ
(`−1)
j→i , (3)

where Nvi is the set of all check nodes connected to
variable node vi, and γ

(`)
j→i is the message sent back

from the check cj to the variable vi at iteration `. Note
that unlike commonly described, the messages sent by a
variable to its neighboring check nodes are equal. The
contribution of each check message will be taken into
account in the check node update, as described in the

following. Messages γ(`)j→i are calculated according to:

β
(`)
i→j = β

(`)
i − γ

(`−1)
j→i (4)

γ
(`)
j→i =

 ∏
i′∈Ncj

\{i}

sgn
(
β
(`)
i′→j

) (5)

× max

[
min

j′∈Ncj
\{i}

∣∣∣β(`)
i′→j

∣∣∣− λ, 0] ,
where λ is an offset parameter to be optimized later on,
Ncj\{i} is the set of all the variable nodes connected to
check node cj except vi.

C. Serial and Parallel Scheduling

Message passing decoders can be implemented with
different types of scheduling [18]. In flooding or parallel
scheduling all the variable nodes (or check nodes) update
their edges simultaneously. Alternatively, in serial-C
scheduling, the check nodes are updated in a serial
manner. After each check node update, all the variable
nodes connected to it are updated. Serial-C scheduling
enables to reduce the size of the circuit and requires
fewer decoding iterations [18]. In this article, the decoder
follows the serial-C schedule.

III. FINITE-LENGTH PERFORMANCE

Density evolution [19], [20] is a standard tool to
evaluate the performance of an LDPC decoder under
asymptotic conditions. For a given SNR, density evolu-
tion provides the decoder error probability pe∞ averaged
over the ensemble of codes described by protograph S.

With density evolution, the error probability pe∞ is
evaluated assuming an infinite codeword length. In order
to predict the finite-length performance of the quantized
Min-Sum decoder described in Section II-B, we rely on
the method proposed in [11]. In this method, in order to
evaluate the decoder error probability peN (ξ) at SNR ξ
for a codeword length N , we use the following equation:

peN (ξ) =

∫ 1
2

0

pe∞ (x)φN

(
x; p0,

p0(1− p0)

N

)
dx (6)

In this expression, p0 = 1
2 −

1
2erf

(√
ξ/2
)

, and pe∞ (x)

is the error probability evaluated with standard density
evolution at SNR value 2(erf−1(1− 2x))2. The function
φN (x;µ, σ2) is the probability density function of a
Gaussian random variable with mean µ and variance σ2.

This method takes into account the variability in the
channel at finite-length. It does not take into account
the effect of cycles in the code parity check matrix,
which can also affect the finite-length performance of
the decoder. This method is therefore well suited for
codes from moderate to long length N .

The same method [11] can be used to estimate the
average number of iterations for the decoder to achieve
a target error probability pe for a given SNR ξ. At length



N , the number of iterations LN (ξ, pe) for a decoder to
achieve pe can be evaluated by:

LN (ξ, pe) =

∫ 1
2

0

L∞ (x, pe)φN

(
x; p0,

p0(1− p0)

N

)
dx

(7)
where L∞(x, pe) is the number of required iterations
estimated by standard density evolution to achieve the
target error probability pe and p0 is as defined above. If
the decoder cannot reach the error probability pe for the
considered SNR, LN (ξ, pe) is set to +∞ by convention.

IV. ENERGY MODELS

We now introduce two energy models for the quan-
tized Min-Sum decoder. The complexity energy model
evaluates the total number of decoding operations. The
memory energy model considers the total number of bits
written into memory during the decoding. Before provid-
ing the energy models, we first analyze the memory use
and number of operations performed by the decoder.

A. Memory Analysis

For a check node c with degree dc, we must store one
sign bit for every output message, and two minimum
values of q−1 bits each. Thus the total number of stored
bits is dc+2q−2. In a variable node v of degree dv , only
β
(`)
i has to be saved in memory. In order to avoid any

saturation error when storing the sum, we must be able
to represent any sum of dv + 1 messages. Thus storing
a sum requires q + qs bits, with qs = dlog2(dv + 1)e.
Since dv varies, we define qs = dlog2(dv,max + 1)e,
where dv,max = max

i∈{1,...,n}
(dvi).

B. Complexity Analysis

Due to the serial-C scheduling, a variable node is
updated each time one of its neighboring check nodes is
updated. Considering that variable node vi is connected
to check node cj that is being updated, we first compute
(4), and once the check node has been updated, finish
the variable node update with

β
(`)
i ← β

(`−1)
i→j + γ

(`−1)
j→i ,

requiring 2dvi additions during one iteration, each ap-
plied to inputs of q + qs bits.

For the check node update, the processing of the sign
in (5) requires (2dcj − 1) 2-input exclusive-OR (XOR-
2) operations. Finally, we assume that the calculation of
the two minimum values of (5) is performed using a
merge-sort circuit architecture [17]. This circuit requires
bdcj2 c+ 2(ddcj2 e − 1) comparisons, and all the compar-
isons are performed on inputs of q − 1 bits.

C. Energy Models

In order to derive the complexity energy model, we
denote by Eadd, Exor, Ecomp, the elementary energy
consumption of a 1-bit addition, an XOR-2 operation,

and a 1-bit comparison, respectively. Consider an LDPC
code of length N , rate R, and constructed from a
protograph S. For a target SNR ξ and bit error rate
(BER) pe, the complexity energy model is given by:

Ec =
LN (ξ, pe)N

n

(
2(q + qs)Eadd

n∑
i=1

dvi

+ (1−R)

(
Exor

m∑
j=1

(
2dcj − 1

)
+ Ecomp(q − 1)

(
b
dcj
2
c+ 2

(
d
dcj
2
e − 1

))))
(8)

where LN (ξ, pe) (7) is the number of iterations needed
by the decoder to achieve the performance target.

The number of operations performed by check nodes
with dcj even and by check nodes with dcj odd only
differ by a constant 1

2 . We can thus approximate Ec with
the worst case where all the dcj are odd. If we also
assume that a comparison has the same complexity as
an addition, i.e. Ecomp = Eadd, the complexity energy
model simplifies to:

Ec = LN (ξ, pe)N

(
2Eadd(q+ qs)d̃v +Exor(2d̃c− 1)

+
3

2
Eadd(q − 1)(d̃c − 1)

)
, (9)

where d̃v = 1
n

∑n
i=1 dvi and d̃c = 1

m

∑m
j=1 dcj are

respectively the average variable and check node de-
grees of the code. Note that for protographs, we have
d̃v = (1−R)d̃c.

In order to derive the memory energy model, we
denote by Ebit the elementary energy consumption for
writing one bit in memory. For an LDPC code of
length N and rate R constructed from protograph S,
the memory energy model is given by

Em =
LN (ξ, pe)N

n
Ebit

(
n∑
i=1

dvi (q + qs) (10)

+ (1−R)

 m∑
j=1

(
2q + dcj − 2

) ,

which can be simplified to

Em = LN (ξ, pe)EbitN
(

(q+qs)d̃v+(1−R)(d̃c+2q−2)
)
.

(11)

The two energy models Ec and Em depend on the
SNR and BER targets through the average number of
iterations LN . In addition, only the average degrees d̃v
and d̃c of the protograph S explicitly appear in these
energy models. The protograph S however also has an
influence on the number LN of iterations, see (7).



V. ENERGY OPTIMIZATION

In this section, we first formulate the decoder energy
optimization problem. We then present an optimization
method to solve this problem.

A. Optimization Problem

We now want to minimize the decoder energy con-
sumption while maintaining a certain level of decoding
performance. In order to simplify the optimization prob-
lem, we first assume that the code rate R, the codeword
length N , the number q of quantization bits, and the
dimensions m,n of the protograph are fixed. Then, in
order to specify the decoding performance, we set a
target SNR ξ∗ and a target error probability pe to be
achieved at that SNR. Once these parameters are set, we
formulate the optimization problem as

min
S,L

E(S, L) s.t. pe,opt(ξ
∗) < pe,max (12)

where
pe,opt(ξ

∗) = min
α,λ

peN (ξ∗)

and peN (ξ∗) is defined in (6). Note that peN (ξ∗) also
depends on S, and L, which is not explicitly stated here
in order to simplify the notation. In (12), the energy
function E can be given either by the complexity energy
model (8), by the memory energy model (10), or by a
weighted combination of both.

B. Optimization Method

In order to solve the optimization problem (12),
we use a genetic algorithm called Differential Evolu-
tion [12]. This algorithm was initially introduced for
non-linear and non-differentiable continuous space func-
tions. However, in our optimization problem, the pro-
tograph coefficients and the number of iterations are
discrete parameters. Thefore, we modified the original
algorithm as described in the following.

Denote by F the function to be minimized. The
Differential Evolution algorithm first generates randomly
a population g1 of size W of matrices S

(1)
1 , · · · ,S(1)

W ,
each of size m×n. In order to generate a new population
gi+1 of W matrices from the previous population gi,
Differential Evolution relies on two functions called
Mutation and Crossover. These two functions realize W
random combinations V

(i+1)
1 , · · · ,V (i+1)

W of the matri-
ces S

(i)
1 , · · · ,S(i)

W of the population gi. The population
gi+1 is then constructed from the following selection
rule: ∀k ∈ {1, · · · ,W},

S
(i+1)
k =

{
V

(i+1)
k if F(V

(i+1)
k ) < F(S

(i)
k )

S
(i)
k otherwise.

(13)
In other words, a newly generated matrix V

(i+1)
k is

included into the population only if it decreases the
optimization criterion.

To properly adjust the algorithm to generate discrete
protographs, the following changes are required. First,
the populations gi only contain protographs, and do not
include the number of iterations. Second, when applying
the Mutation and Crossover operations, the components
of each vector of the population are rounded to the clos-
est integer values, and forced to be between 0 and a given
value Smax. Then, for a protograph to be included into a
population, it is necessary that dv,min = mini(dvi) > 1
and dc,min = mini(dci) > 1 in order to avoid degree 0
and degree 1 nodes. In particular, we eliminate degree 1
variable nodes that could show good performance under
density evolution, but a bad minimum distance, which
would affect the code performance at finite length [21].

Before applying the selection step (13), we should
check whether the protograph V

(i+1)
k verifies the

constraint pe,opt(ξ
∗) < pe,max. However, computing

pe,opt(ξ
∗) is computationally expensive, because of the

integral in (6). This is why we introduce a second SNR
value ξ∗∗ and only verify that

min
α,λ

pe∞(ξ∗∗) < pe,max.

The minimum over α and λ is computed by numerical
minimization of pe∞(ξ∗∗). If protograph V (i+1)

k satisfies
the above constraint, we then compute the minimum
number of iterations L∗N (ξ∗, pe,opt(ξ

∗)) (see (7)) that
allow to achieve pe,opt(ξ

∗) for V
(i+1)
k , if it exists.

Finally, we apply the selection step with the function
E(V

(i+1)
k , L∗N ).

VI. SIMULATION

For the protograph construction, we used a code
rate R = 0.5, a protograph size n = 4, m = 2,
Smax = 6, and pe,max = 10−9 is set as the maximum
error probability at an SNR ξ∗∗ = 1.22dB (at infinite
code length) and ξ∗ = 1.45dB .

For illustrative purposes, we substitute the energy
constants with rough estimates. Based on the estimate
of 0.1pJ for a 32-bit addition reported in [22], we set
Eadd = 3.13 fJ, and since a 1-bit adder contains two
XOR-2 gates, Exor = 1.56 fJ. We base the storage
energy on the estimate of 10 pJ for a 64-bit access from
an 8KB cache, yielding an average of Ebit = 0.156 pJ.
These values do not affect the optimization result.

Table I shows examples of generated protographs
using the proposed optimization method. The protograph
S0 is generated without the energy criterion, while the
protograph Sm is generated based on the energy memory
model, and Sc based on the complexity model. The
energy evaluated using the memory model is denoted
Em, and Ec is the energy evaluated using the complexity
model. As we can see, S0 achieves a better SNR thresh-
old, but Sc and Sm respect the SNR threshold criterion
and consume less energy based on both energy models.



TABLE I: Infinite-length thresholds and finite-length
energy scores of the protographs for ξ∗ = 1.45dB and
N = 104.

Protograph SNR Ec Em

Sm =

[
3 2 1 2
0 1 1 4

]
1.21 dB 20.1 nJ 523 nJ

Sc =

[
0 1 2 5
2 2 0 2

]
1.20 dB 19.7 nJ 533 nJ

S0 =

[
2 1 3 2
5 1 1 0

]
1.15 dB 33.5 nJ 883 nJ

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
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Fig. 1: Bit error rate of codes generated from protographs
with energy criteria (Sc, Sm) and without the energy
criteria (S0).

Figure 1 provides the BER of codes of length N =
10000 generated from each protograph, evaluated using
Monte-Carlo simulation of the quantized decoder (Sim)
as well as with the finite-length density evolution (FL-
DE) method. At the target SNR ξ∗ = 1.45dB, protograph
Sc reduces Ec by 41% and Sm reduces Em also by
41%, compared to the threshold-optimized protograph
S0. However, they also exhibit higher BER, especially
in the case of the code constructed from Sm. Future work
will improve the optimization method to allow finding
solutions with any desired tradeoff of energy and BER
performance.

VII. CONCLUSION

In this paper, we introduced two models to evaluate
the energy consumption of quantized Min-Sum LDPC
decoders. We then proposed an optimization method to
minimize the energy consumption with respect to the
protograph and the number of iterations, while satisfying
a given decoding performance constraint. Future works
will include other parameters in the optimization such
as the quantization alphabets and the lifting factors.
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