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Jérémy Nadal∗, Mickaël Fiorentino∗, Elsa Dupraz† and François Leduc-Primeau∗
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Abstract—A deeply pipelined and parallel LDPC decoder
architecture is proposed in this paper. The main feature of this
architecture is the ∆-update scheme, which relaxes the data
dependency requirement and allows for deeper pipelines than
typical decoders. The proposed architecture also has the flexibility
to handle a large number of codes. Frame error rate performance
is shown for three codes with different quantization parameters.
Finally, the impact of pipeline depth on processing time and on
the energy-delay product (EDP) is evaluated from post-synthesis
results. The results show that the ability to have deeper pipelines
can lead to large reductions in EDP.

I. INTRODUCTION

Low-density parity check (LDPC) is the key correcting
code for several communication standards, such as 801.11n
(WiFi) and 5th generation new radio (5GNR). Building hard-
ware implementations of LDPC decoders is more and more
challenging due to the increasing demands in data rate, quality-
of-service, and flexibility while keeping the latency and the
energy consumption as low as possible. This is for instance
the case for the upcoming 5GNR standard, where new services
such as ultra-reliable low-latency communication (URLLC)
are introduced. Some internet-of-thing applications may also
require central units with very powerful decoding capabilities,
due to the important amount of data they receive from thou-
sands of machines or sensors.

In this context, we propose a novel highly parallel and
deeply pipelined LDPC decoder architecture for high data rate
and low latency applications, which we have implemented in a
65 nm technology node. Deep pipeline is supported thanks to a
novel ∆-update mechanism, introduced in [1], which allows to
ignore some of the data dependencies of the layered schedule.
This paper provides the first hardware implementation of a
decoder architecture based on the ∆-update, including post-
synthesis results. It demonstrates for the first time the benefits
of using these techniques in terms of latency, processing
throughput, and energy consumption, for several codes having
different sparsity and regularity characteristics. It also shows
that the proposed architecture is flexible enough to support
many type of LDPC codes.

This paper is structured as follows. Section II describes
LDPC codes and the offset min-sum (OMS) decoding al-
gorithm with the ∆-update mechanism. Then, Section III
introduces the proposed ∆-update LDPC decoder architecture.
Section IV presents the post-synthesis and frame error rate
(FER) performance results for different pipeline depth and
quantization choice. The impact of the pipeline on the process-

ing time and the energy-delay product (EDP) is also analysed
in this section. Finally, Section V concludes the paper.

II. LDPC CODES AND DECODER

A. LDPC Codes

The quasi-cyclic (QC)-LDPC codes [2] are considered in
this paper due to their suitability for hardware implementation.
The QC-LDPC code construction starts with a base matrix
(BM) of size Nr × Nc. Each non-zero element of this BM
is expanded by a Z-by-Z cyclically-shifted identity matrix,
where Z is the lifting size. The circular shift values depend
on Z and on the edge positions in the BM. This family of
codes allows for efficient hardware implementations with a
high degree of parallelism and a high processing throughput
[3]. In this work, we consider 3 types of LDPC codes: i) 5GNR
code [4] with BM index 1 (BM1), code rate (CR) 1/3, and
Z = 32, ii) 802.11n WiFi code [5] with CR 1/2, and Z = 27,
and iii) the code proposed in [1], with a 9-color constraint and
Z = 18, referred as C9 − Z18 in the rest of paper.

B. Quantized OMS-LDPC Decoder

After encoding and transmitting the message over the noisy
channel, the received signal at time i is yi = xi + wi, where
xi is the ith transmitted modulated symbol, and wi is the
additive Gaussian noise with variance σ2. For simplicity, the
BPSK modulation is employed: xi ∈ {−1,+1} = 2ci − 1,
where ci is the ith transmitted bit. For each channel output
yi, the decoder first computes Qµ-bits belief outputs µi as
µi = satQµ(bαyie), where b.e define the rounding operator, α
is a belief scaling parameter depending on Qµ and σ2, and

satQ(x) = max(min(x, 2Q−1 − 1,−2Q−1))

is the Q-bits saturation operator. To describe the decoding
algorithm, the following variables are introduced: µ(t)

i→j cor-
responds to the variable node (VN) i to check node (CN)
j message at iteration number t, λ(t)

j→i is the CN j to VN
i message at t, Λi is to the current sum of the incoming
messages at VN index i. The Λi are referred to as the VN
belief sums, Vj is the set of VN indexes connected to the CN
j, Nr is the number of rows in the BM, β is a positive integer
coefficient corresponding to the offset parameter, Qλ and
QΛ > Qµ respectively represent the number of quantization
bits for the λ(t)

j→i variables and for the Λi variables.
The OMS LDPC decoding algorithm [6] with row-layered

scheduling works as follows. At the first iteration t = 1, the
VN belief sums Λi are initialized with the channel beliefs µi,



Fig. 1. Proposed LDPC decoder hardware architecture.

and the messages µ(1)
i→j are set to 0. Then, at each iteration t >

1, the messages µ(t)
i→j and the belief sums Λi are sequentially

updated for each j ∈ {0, ..., Z × (Nr − 1)} according to the
following equations, ∀i:

µ
(t)
i→j = sgn(Λi − λ(t−1)

j→i )satQλ(|Λi − λ(t−1)
j→i |), (1)

λ
(t)
j→i =

∏
l∈Vj\i

sgn(µ
(t)
l→j) max

(
min
l∈Vj\i

|µ(t)
l→j | − β, 0

)
, (2)

Λi = satQΛ

(
λ

(t)
j→i + µ

(t)
i→j
)
, (3)

where sgn(.) denotes the sign operator. The algorithm stops
when a given number of iterations is reached or when an early
termination (ET) criterion is fulfilled, for instance if all parity-
check equations are satisfied. When considering QC parity-
matrices, the VN belief sums Λi are typically processed in
parallel per sub-block of Z rows, called layer, due to the
absence of data dependency in these sub-blocks.

C. ∆-Update Technique

Data dependencies between successive layers cause update
conflicts which can highly damage the FER performance
or the processing rate of the decoder. The sparsity of the
LDPC parity-check matrix often limits the data dependencies.
However, some irregular codes, such as the ones used in
5GNR or 802.11n standards, can be very dense. To avoid such
conflicts, the ∆-update mechanism was proposed in [1]. The
main idea is to compute the difference ∆i between the updated
VN belief sum and its current value. Once the computation is
finished, ∆i is used to update the next VN belief sum Λi. If
a VN is involved in several concurrent CN computations, its
message-update schedule is simply altered, while other VNs
can still be updated normally. To incorporate the ∆-update
mechanism in the layered OMS LDPC decoder algorithm
described in Section II-B, equation (3) is replaced by

∆i = λ
(t)
j→i − λ

(t−1)
j→i ,

and the VN belief sums are updated by adding ∆i to the
previous Λi value: Λi ← satQΛ

(∆i + Λi). Equations (1) and
(2) remain unchanged.

III. PROPOSED HARDWARE ARCHITECTURE

A. Delta-Update LDPC Decoder Architecture

The top-level architecture of the proposed LDPC decoder
is shown in Fig. 1. To allow high-throughput and low latency
decoding, two parallelism axes are considered:

• up to DCMAX VN belief sum Λi in the BM (i.e. entire
check nodes) are processed in parallel,

• up to ZMAX rows (i.e. all check nodes in a layer) are
processed in parallel.

Therefore, the architecture is composed of DCMAX
Shift-∆-Mem units connected to ZMAX check node
processing elements (CNPEs). The Shift-∆-Mem unit
number l ∈ {0, ..., DCMAX − 1} takes as input, after the first
decoding iteration, a vector ∆ of ZMAX ∆-update signals
(Q∆ bits) coming from the lth output of the ZMAX CNPEs.
Each shift unit is composed of two barrel shifters in
parallel followed by a last multiplexer stage for selecting the
output [7]. The Λ-memories, each of depth NsubVN store
the ZMAX VN belief sums of QΛ bits associated with a subset
of NsubVN variable nodes. Each row of the memory contains
variable nodes associated with a single block-column of the
parity-check matrix.

The novelty of the architecture resides in the +∆ units
that add the shifted ∆-update and the VN belief sums to
update, read from the Λ-memories. The outputs of the
+∆ units corresponds to the updated VN belief sums vector,
and is written back into the Λ-memories. As described in
Section II-C, this scheme enables to support deep pipeline con-
figurations without update conflicts, at the cost of additional
decoding iterations. This is particularly needed for highly
parallel architectures where several pipeline stages are required
to reduce the critical path of the 2-min search computation
tree. It is worth noting that, contrary to most state-of-the-art
architectures, it is not possible to avoid the use of the shift
W unit in Fig. 1 due to the ∆-update scheme [1]. It is however
a minor drawback as it only introduces a slight complexity
increase and deeper pipeline depth can be supported.

In the CNPE architecture, the variable node processor
(VNP) front unit subtracts the VN Belief sums Λi to the
Qλ bits message values λ(t−1) of the previous iteration. After
sign and magnitude separation, the magnitudes of the obtained
DCMAX messages are saturated to Qλ − 1 bits and fed to
the 2-min search unit. This block is composed of cascaded
sort and merge structures described in [8]. The major change
compared to typical CNPE architectures comes from the VNP
back unit. It outputs the ∆-update values of Q∆ = Qλ+1 bits
obtained by subtracting the old message values λt−1 with the
newly obtained message values λt. These new messages are
finally stored into the λ-memories, each of depth Nr,MAX
which corresponds to the maximum number of BM rows that
the decoder can support.

B. Pipeline Configuration

Several pipeline configurations are supported on blocks
having a recursive structure. This is the case for the shift
and the 2-MIN search units, highlighted in blue in Fig. 1,
where a pipeline register can be instantiated (or not) between
each stage. Furthermore, the clock cycle latency due to the
Λ-memory write cycle is counted as a pipeline stage, and
one mandatory pipeline register stage is added before the
+∆ unit. Let dshift ∈ {1, ..., log2(ZMAX)} and d2-MIN ∈



TABLE I
SIMULATION PARAMETERS FOR THE CODES AND THE DECODING.

Code type 5GNR 801.11.n C9 − Z18

Code rate 1/3 1/2 1/2
Code length 2176 648 2592
Lift. size Z 32 27 18

(Eb/N0)WF 1.3 dB 2.5 dB 1.7 dB
(Eb/N0)EF 2 dB 3.2 dB 2.4 dB

Qλ 5 6 7 5 6 7 5 6 7
αWF 4 4.5 4.5 3.2 4.2 4.2 4 5.7 5.7
αEF 3 5.2 4.2 2.5 2.5 2.5 2.5 5.7 4.2

{1, ..., dlog2(MAX DC)e + 1} respectively be the pipeline
depth of these two blocks, where d.e denotes the ceiling
function. Therefore, the total pipeline depth of the LDPC
decoder is: dDEC = d2-MIN + 2× dshift + 2.

It is worth mentioning that the read from Λ-memory and
the +∆ computation must be performed during the same clock
cycle. Otherwise, update conflicts may occur, and techniques
to avoid them will be considered in future work. Therefore,
the clock period will be ultimately limited by the propagation
time of the ∆-update path.

IV. SIMULATIONS AND RESULTS

A. Performance Evaluation

This section aims to analyze the FER performance of
the proposed decoder architecture when considering Qλ ∈
{5, 6, 7} and the three LDPC codes presented in Section II-A.
To support all these cases, the decoder architecture is imple-
mented with MAX DC = 26, ZMAX = 32, itmax = 25 (with
ET), Nr,MAX = 96, NsubVN = 8, Qµ = Qλ and QΛ = 8. The
pipeline depth dDEC is set to 15 for the 5GNR code and the
C9 − Z18 codes, and to 4 for the 802.11n code.

For all the results presented in this section, two Monte-
Carlo simulations are performed for each considered case. The
first simulation considers a belief scaling parameter αWF that
minimizes the FER at a given Eb/N0 value in the waterfall
region (noted (Eb/N0)WF ). The second simulation considers
the optimized belief scaling parameter αEF at a (Eb/N0)EF
value in the error floor region. All the code and decoding
parameters are presented in Table I. For all the simulations,
we have found the optimal offset to be β = 1.

Figure 2 shows the FER results for each code and each
Qλ. Each simulation curve is obtained by selecting, for each
Eb/N0 value, the best FER from the waterfall and error floor
simulation setups. It can be observed that Qλ = 6 and Qλ = 7
achieve similar FER performance for the 5GNR and C9−Z18

codes, and the FER is degraded when Qλ = 5. Particularly,
we observe a FER increase before the error floor. This can be
explained by the fact that the belief scaling is not optimised
in this region, and that this parameter has a strong influence
when the number of quantization bits is too low. Therefore, α
must be optimised for all Eb/N0 values when case Qλ = 5,
requiring an accurate noise power estimator in practice. For
the remaining of this section, Qλ = 6 will be considered.
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Fig. 2. FER simulation of the LDPC decoders with different Qλ values and
codes.

TABLE II
SYNTHESIS RESULTS FOR DIFFERENT PIPELINE DEPTH WITH Qλ = 6.

Pipeline depth 5 7 9 13

Cell count (×106) 1.01 1.06 1.18 1.23
Cell area (mm2) 4.31 4.34 5.00 5.38
Net area (mm2) 1.80 1.87 2.01 2.07

Total area (mm2) 6.12 6.22 7.01 7.45
Clock period (ns) 2 1.4 1.2 1.1

Estimated power (W) 1.32 2.07 2.87 3.63

B. Synthesis Results

The synthesis flow that we have developed to perform the
synthesis of the reported architectures relies on the Cadence
GenusTM tool and the TSMC65GP 65nm design kit. Table II
compares the results obtained for different pipeline depth dDEC,
in terms of design complexity, clock period and dynamic
power consumption. The clock period is a measure of the
maximum speed achievable by the design. For each pipeline
depth configuration, it is obtained by successively running
the synthesis with incremented clock period targets, until the
obtained slack is positive. The architecture parameters are the
same as described in Section IV-A, with Qλ = 6. The pipeline
stage locations are chosen to balance the propagation delay
between each stage.

Results show that the maximum clock frequency is almost
doubled when comparing dDEC = 5 and dDEC = 13 cases. This
increase in speed is achieved at the cost of area and power
consumption: the cell count and the cell area are respectively
increased by 21% and 25%, and the power consumption is
increased by a factor of 2.75. When the pipeline depth reaches
13, the propagation path between each register becomes
shorter than the ∆-update path discussed in Section III-B.
Therefore, there is no reason to increase the pipeline depth
above 13 as it would results in a waste of area and power
consumption. The dynamic power consumption significantly
increases with the pipeline depth, which is due to: i) the faster
switching activity of the transistors, ii) increased area resulting
from added pipeline registers. In the following section, we
evaluate the trade-offs between speed and power consumption,
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Fig. 3. Average and worst-case decoding time for different pipeline depths
and codes, for a FER target of 10−2 at (Eb/N0)WF values (given in Table I).

using the EDP and the decoding time metrics.

C. Pipeline Depth Analysis

The ∆-update mechanism described in Section II-C enables
the use of architectures with deep pipeline. Higher clock
frequency can be reached, at the cost of an increased number
of decoding iteration, in-between the layered and the flooding
schedules. In this section, the impact of the pipeline depth on
the decoding time and the EDP is analyzed when considering
the synthesis results obtained in IV-B.

We define the average normalized decoding time (NDT)
as NDTavg = ñclkTclk/L, where ñclk is the average number
of clock cycle to perform a decoding (with ET), Tclk is the
clock period of the circuit and L is the code length. The
worst-case NDT is defined as NDTMAX = NrtmaxTclk/L.
Note that 1/NDTMAX gives the worst-case throughput, while
1/NDTavg gives the best throughput that can be achieved
by the architecture if inputs can be buffered. To measure
EDP, we assume that ET is used to calculate the energy,
while the delay corresponds to NDTMAX. Therefore we have
EDP = NDTavg · NDTMAX · PD, where PD is the dynamic
power estimated by the synthesis tool.

Fig. 3 shows the average and worst-case NDT when the
pipeline depth d varies from 1 to 15, for all the codes. These
results are obtained for a 10−2 FER target at (Eb/N0)WF .
Results are extrapolated for dDEC ≤ 5, assuming that the clock
period perfectly scale with the pipeline depth. Through succes-
sive Monte-Carlo simulation, tmax is obtained when the FER
target is reached while the ET mechanism is disabled. Then,
the ET is activated to deduce ñclk. Pipeline stage locations have
been chosen to minimize the critical path delay, and Tclk is
obtained from the synthesis results presented in Section IV-B.
It can be seen that increasing dDEC always results in improved
decoding times for all the codes. In fact, we observed that
the clock period decreases faster than the increase in number
of iterations. However, for very deep pipelines (dDEC ≥ 9),
latency gains are marginal while penalizing the power and
area. This is particularly visible in Fig. 4, where the EDP
slowly increases when dDEC ≥ 9. The 5GNR and 802.11n
codes cannot be pipelined with more than 1 stage when
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Fig. 4. Normalized EDP for different pipeline depths and codes, for a FER
target of 10−2 at (Eb/N0)WF values (given in Table I).

considering a parallel architecture with a strict row-layered
schedule. Therefore, the ∆-update scheme with dDEC = 7
reduces the EDP by 75% for the 5GNR code and 62% for
the 802.11n code. The C9 − Z18 code is designed to support
pipeline depth up to dDEC = 5 [1], which results in a reduction
of 23% of the EDP (when dDEC = 7). This demonstrates that
deeper pipelines can reduce the EDP.

V. CONCLUSION

A novel highly parallel LDPC decoder architecture is pro-
posed. Thanks to its ∆ update scheme, deep pipelines can be
supported without update conflicts, at the cost of additional
decoding iterations. This scheme also allows to easily support
many different codes without complex control mechanisms.
We observed that the ability to increase the pipeline depth
allows a significant reduction of the decoding time and of the
EDP. This demonstrate the efficiency of the ∆-update scheme
to improve the processing speed and the EDP of highly-
parallel LDPC decoders.
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