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Bit-Plane Coding in Extractable Source Coding:
optimality, modeling, and application to 360◦ data

Fangping Ye, Navid Mahmoudian Bidgoli, Elsa Dupraz, Aline Roumy, Karine Amis, Thomas Maugey

Abstract—In extractable source coding, multiple correlated
sources are jointly compressed but can be individually accessed
in the compressed domain. Performance is measured in terms of
storage and transmission rates. This problem has multiple appli-
cations in interactive video compression such as Free Viewpoint
Television or navigation in 360◦ videos. In this paper, we analyze
and improve a practical coding scheme. We consider a binarized
coding scheme, which insures a low decoding complexity. First, we
show that binarization does not impact the transmission rate but
only slightly the storage with respect to a symbol based approach.
Second, we propose a 𝑄-ary symmetric model to represent the
pairwise joint distribution of the sources instead of the widely
used Laplacian model. Third, we introduce a novel pre-estimation
strategy, which allows to infer the symbols of some bit planes
without any additional data and therefore permits to reduce the
storage and transmission rates. In the context of 360◦ images, the
proposed scheme allows to save 14% and 34% bitrate in storage
and transmission rates respectively.

Index Terms—Source coding with side information, source
modeling, bit plane coding, LDPC.

I. INTRODUCTION

EXtractable source coding (ExtSC) refers to the problem
of compressing together multiple sources, while allowing

each user to extract only some of them. This problem has
numerous applications, particularly in video compression. In
Free Viewpoint Television (FTV), the user can choose one
view among the proposed ones and change it at anytime. In
360◦ images, the visual data is recorded in every direction
and the user can choose any part of the image of arbitrary
size and direction. Both examples are instances of ExtSC,
where a data vector, generated by a source, gives a frame of
a view in FTV or an image block in 360◦ images. The main
advantage of ExtSC is that the sources can be compressed
without the awareness of which sources will be requested, and
still be extracted at the same compression rate (also called
transmission rate) as if the encoder knew the identity of
the requested sources [1], [2], [3]. Compressing without the
request knowledge only slightly increases the overall storage
rate of the complete set of sources.

Two characteristics are common to the above applications.
First, low decoding computational complexity is required to
allow smooth navigation. However, ExtSC, as an extension
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of the Distributed Source Coding (DSC) problem [4], [5],
is implemented by means of channel codes [6]. For non-
binary sources, such as images, non-binary Low Density Parity
Check (LDPC) codes can be used, but their decoding is highly
complex [7]. To lower the computational complexity, one can
binarize the symbols and use binary LDPC codes [8]. This
binarization is optimal in the context of DSC [9], but no such
result exists for ExtSC. Therefore, the first contribution of this
paper consists in analyzing whether binarization remains op-
timal for the two compression rates (storage and transmission
rates) involved in ExtSC.

The second characteristic that a practical implementation
of ExtSC should satisfy is to reduce as much as possible the
storage and transmission rates. For this, the implementation
should adapt to the statistics of the source symbols to encode.
To do so, a source model can be selected at the encoder and
its parameters sent to the decoder. Laplacian model has been
considered in DSC [10] or ExtSC [11]. Here, as a second
contribution, we instead propose a 𝑄-ary symmetric model
to represent the pairwise joint distribution of the sources.
The third contribution concerns the rate allocation among
the bit planes. Indeed, we remarked that some bitplanes can
be perfectly recovered from previously decoded bitplanes,
without any need for additional data transmission. We propose
a criterion to identify these bitplanes, and introduce this novel
pre-estimation strategy into our implementation. Finally, the
proposed coder is integrated into a 360◦ image extractable
compression algorithm. Simulations show that the 𝑄-ary sym-
metric model and the pre-estimation strategy significantly
improve the PSNR compared to the conventional setup with
the Laplacian model and without the pre-estimation strategy.

Notation and definitions. Throughout the paper, È1, 𝑛É denotes
the set of integers from 1 to 𝑛. The discrete source 𝑋 to be
compressed has alphabet X. It generates a length−𝑛 random
vector denoted 𝑋 = [𝑋1𝑋2 . . . 𝑋𝑘 . . . 𝑋𝑛]𝑇 . We consider 𝐽

different side informations 𝑌 ( 𝑗) , 𝑗 ∈ È1, 𝐽É and each 𝑌 ( 𝑗) ,
generates a length-𝑛 vector 𝑌 ( 𝑗) = [𝑌 ( 𝑗)

1 , 𝑌
( 𝑗)
2 , . . . , 𝑌

( 𝑗)
𝑛 ]𝑇 . We

assume that all side information symbols 𝑌
( 𝑗)
𝑘

belong to the
same discrete alphabet Y.

II. EXTSC AND OPTIMALITY OF THE BINARIZATION

A. ExtSC scheme

The ExtSC coding scheme described in [2] consists of two
steps. First, the encoder compresses a source vector 𝑋 knowing
a set of side information vectors {𝑌 ( 𝑗) ,∀ 𝑗 ∈ È1, 𝐽É}, and
outputs a stored codeword 𝑈 compressed at storage rate 𝑆.
Second, with the knowledge that the decoder has access to
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side information 𝑌 ( 𝑗) , the encoder transmits to the decoder
a subpart 𝑈 ( 𝑗) ⊆ 𝑈 of the stored codeword, where 𝑈 ( 𝑗)

is called the transmitted codeword. For this second step,
the transmission rate 𝑅( 𝑗) depends on the side information
𝑌 ( 𝑗) available at the decoder. ExtSC is an extension of the
compound conditional source coding (CCSC) problem [12].
However, in CCSC, the transmission rate and storage rate
are equal, but for ExtSC, an extraction is allowed in the
compressed domain to transmit only what is needed once the
request is known.

With the above notation, the achievable transmission rates
𝑅( 𝑗) and storage rate 𝑆 for ExtSC are obtained from [2] as

∀ 𝑗 ∈ È1, 𝐽É, 𝑅( 𝑗) = 𝐻 (𝑋 |𝑌 ( 𝑗) ) (1)

𝑆 = max
𝑗∈È1,𝐽É

𝐻 (𝑋 |𝑌 ( 𝑗) ), (2)

where 𝐻 (𝑋 |𝑌 ( 𝑗) ) is the conditional entropy of 𝑋 given 𝑌 ( 𝑗) .

B. Source binarization

We now describe how the source 𝑋 is transformed into bit
planes prior to coding. In order to convert the symbols 𝑋𝑘

into bits, we consider a sign-magnitude representation over 𝐿

bits. For 𝑏 ∈ È0, 𝐿 − 1É, bit position 𝑏 = 0 gives the Least
Significant Bit (LSB), 𝑏 = 𝐿 − 1 gives the Most Significant
Bit (MSB), and 𝑏 = 𝐿 gives the sign bit. The 𝑏-th bit of 𝑋𝑘

is denoted 𝑄
(𝑏)
𝑘

. As a result, 𝑋𝑘 can be expressed as

𝑋𝑘 =

(
1 − 2𝑄 (𝐿)

𝑘

) 𝐿−1∑︁
𝑏=1

𝑄
(𝑏)
𝑘

2𝑏 . (3)

When binarizing the whole vector 𝑋 , the 𝑏-th bit-plane 𝑄 (𝑏) is
defined as 𝑄 (𝑏) = [𝑄 (𝑏)

1 , . . . 𝑄
(𝑏)
𝑛 ]𝑇 . Note that in our scheme,

there is no need to convert the vectors 𝑌 ( 𝑗) into bits.
We now compare the bit-based and symbol-based models

in terms of storage and transmission rates. The transmission
rate achieved with the bit-based model is the sum of the
rates achieved by encoding each bitplane 𝑄 (𝑏) taking into
account the side information 𝑌 ( 𝑗) and all previously encoded
bitplanes 𝑄 (𝑏+1) , . . . , 𝑄 (𝐿) through the conditional probability
distribution 𝑃(𝑄 (𝑏) | 𝑌 ( 𝑗) , 𝑄 (𝑏+1) , . . . , 𝑄 (𝐿−1) ). By applying
(1) to each bitplane, we get

𝑅𝑏𝑖𝑛
( 𝑗) =

𝐿−1∑︁
𝑏=0

𝐻 (𝑄 (𝑏) |𝑌 ( 𝑗) , 𝑄 (𝑏+1) , . . . , 𝑄 (𝐿−1) ) + 𝐻 (𝑄 (𝐿) |𝑌 ( 𝑗) )

= 𝐻 (𝑄 (0) , . . . , 𝑄 (𝐿) |𝑌 ( 𝑗) ) (4a)

= 𝐻 (𝑋 |𝑌 ( 𝑗) ) (4b)

where (4a) follows from applying the chain rule for entropy as
in [9]. As a result, the bit-based model can achieve the same
transmission rate as for the symbol-based model given in (1).

Bit-plane decoding will lead to the following storage rate
𝐿−1∑︁
𝑏=0

max
𝑗∈È1,𝐽É

𝐻 (𝑄 (𝑏) |𝑌 ( 𝑗) , 𝑄 (𝑏+1) , . . . , 𝑄 (𝐿) )+ max
𝑗∈È1,𝐽É

𝐻 (𝑄 (𝐿) |𝑌 ( 𝑗) )

If the side information 𝑗 that maximizes the conditional
entropy 𝐻 (𝑄 (𝑏) |𝑌 ( 𝑗) , 𝑄 (𝑏+1) , . . . , 𝑄 (𝐿) ) is different from bit-
plane to bit-plane, then this storage rate is greater than the

symbol-based achievable storage rate given in (2). Therefore,
bit-plane decomposition is optimal in terms of transmission
rate, but may induce a loss in terms of storage rate.

III. SOURCE MODELING

In FTV, as in standard video compression, the statistical
relation between the source 𝑋 and the side information 𝑌 ( 𝑗)

varies a lot from frame to frame and from video to video [10].
An accurate statistical model between 𝑋 and 𝑌 ( 𝑗) is required
by the LDPC decoder used in our coding scheme.

In the following, we assume that an image transform
exploits all the correlation inside a source and inside a side
information as in [13]. Therefore, the source symbols 𝑋𝑘 are
assumed to be independent and identically distributed (i.i.d.)
and for all 𝑗 ∈ È1, 𝐽É, the side information symbols 𝑌

( 𝑗)
𝑘

are
also i.i.d. For simplicity, we further assume an additive model
𝑌 ( 𝑗) = 𝑋 + 𝑍 ( 𝑗) , where 𝑋 and 𝑍 ( 𝑗) are independent, as often
considered in the literature [14].

Since in our scheme the model parameters are estimated
at the encoder and transmitted to the decoder, we need to
select a statistical model for 𝑍 ( 𝑗) , which minimizes the global
cost of sending the model description and sending the data
[15]. The Laplacian model is often considered in video coding
to model the statistical relation between the source and the
side information [16]. However, this model has two issues.
First it is a continuous model while our data is discrete.
Second, in case of strong correlation between the source and
the side information, the Laplacian model fails to represent
small values of 𝑍 ( 𝑗) . Indeed, when the variance 𝛿2 of 𝑍 ( 𝑗) is
very small, the Laplacian density applied to values of 𝑍𝑘 ≠ 0
becomes numerically equal to 0. This is why, as an alternative,
we propose to use a 𝑄-ary symmetric model.

The probability mass function 𝑃𝑍 ( 𝑗) for a 𝑄-ary symmetric
model [17] is given by

𝑃𝑍 ( 𝑗) (𝑧) =


𝑞 𝑗 if 𝑧 = 0

1−𝑞 𝑗

𝑍
( 𝑗)
max−𝑍

( 𝑗)
min

if 𝑧 ≠ 0 and 𝑍
( 𝑗)
min ≤ 𝑧 ≤ 𝑍

( 𝑗)
max

0 otherwise

(5)

where 𝑞 𝑗 ∈ [0, 1], and 𝑍
( 𝑗)
min, 𝑍

( 𝑗)
max are respectively the

minimum and maximum values of 𝑍 ( 𝑗) . For a given vector
𝑍 ( 𝑗) , the value of 𝑞 𝑗 can be estimated as 𝑞 𝑗 = 𝑁

( 𝑗)
0 /𝑛, where

𝑁
( 𝑗)
0 is the number of symbols 𝑍

( 𝑗)
𝑘

equal to 0.

IV. LOSSLESS CODING SCHEME

A. Bit-plane coding
It was shown in [2] that practical ExtSC coding schemes can

be constructed from channel codes such as LDPC codes. Non-
binary LDPC codes show a very high decoding complexity [7]
and this is why, here, we consider binary LDPC codes.
Therefore, the information vector 𝑋 is encoded and decoded
from bit plane to bit plane, starting with the sign bit with index
𝑏 = 𝐿, and then processing from the MSB 𝑏 = 𝐿 − 1 to the
LSB 𝑏 = 0. For the encoding of the 𝑏-th bit plane 𝑄 (𝑏) , we
use an LDPC parity check matrix 𝐻𝑏 with dimension 𝑛×𝑚𝑏 ,
and we compute a stored codeword 𝑈 (𝑏) of length 𝑚𝑏 as

𝑈 (𝑏) = 𝐻𝑇
𝑏 · 𝑄 (𝑏) . (6)
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Next, in view of transmission, and for each side information
𝑌 ( 𝑗) , the online encoder needs to extract codewords 𝑈 (𝑏, 𝑗) ⊆
𝑈 (𝑏) from the stored codeword 𝑈 (𝑏) . Thus, we consider the
rate-adaptive LDPC code construction of [18] which will
provide incremental codewords. The transmitted codeword
𝑈 (𝑏, 𝑗) of length 𝑚 (𝑏, 𝑗) ∈ È𝑚min, 𝑚𝑏É is chosen so as to ensure
that 𝑄 (𝑏) can be decoded without any error at the decoder from
the side information 𝑌 ( 𝑗) and from the previously decoded
bit-planes (see next section for more details). This can be
done since the encoder knows all the possible side information
vectors 𝑌 ( 𝑗) and can then simulate the decoders. The variable
𝑚min is the minimum possible length for the codeword, as
defined in the rate-adaptive construction of [18].

Finally, the coder also computes and stores the estimated
parameters 𝑞 𝑗 , 𝑍

( 𝑗)
min, and 𝑍

( 𝑗)
max, since these parameters are

needed by the decoder in order to compute the probability
mass function (5) of the 𝑄-ary symmetric model. The param-
eter 𝑞 𝑗 is quantized with 𝑣1 bits, and the parameters 𝑍

( 𝑗)
min, and

𝑍
( 𝑗)
max are quantized with 𝑣2 bits.

B. Bit-plane decoding

We now consider that the decoder has access to side
information 𝑌 ( 𝑗) , and therefore receives the set of codewords
{𝑈 (𝑏, 𝑗) ,∀𝑏 ∈ È0, 𝐿É} as well as the model parameters 𝑞 𝑗 ,
𝑍
( 𝑗)
min, and 𝑍

( 𝑗)
max. The bit plane 𝑄 (𝐿) is decoded first. The

decoding is realized with a standard Belief Propagation (BP)
decoder as described in [19]. The BP decoder requires the bit
probabilities. From [9], we get, ∀𝑘 ∈ È1, 𝑛É,

𝑃(𝑄 (𝐿)
𝑘

= 0 | 𝑌 ( 𝑗)
𝑘

= 𝑦) =
∑︁
𝑥≥0

𝑃𝑍 (𝑥 − 𝑦) =
2𝐿−1∑︁
𝑖=0

𝑃𝑍 (𝑖 − 𝑦)

𝑃(𝑄 (𝐿)
𝑘

= 1 | 𝑌 ( 𝑗)
𝑘

= 𝑦) =
∑︁
𝑥<0

𝑃𝑍 (𝑥 − 𝑦) =
−1∑︁

𝑖=−2𝐿+1

𝑃𝑍 (𝑖 − 𝑦)

where 𝑃𝑍 is given in (5).
Then, for all 𝑏 ∈ È0, 𝐿−1É, the previous decoded bit planes

�̂�
(𝑏+1)

. . . �̂�
(𝐿)

will be used to decode the current bit plane
𝑄 (𝑏) . The bit probabilities of the 𝑄

(𝑏)
𝑘

are required by the BP
decoder. From [9], we get

𝑃

(
𝑄

(𝑏)
𝑘

= 0 | 𝑌 ( 𝑗)
𝑘

= 𝑦, �̂�
(𝑏+1)
𝑘

, . . . , �̂�
(𝐿)
𝑘

)
= 𝛼𝑃

(
𝑄

(𝑏)
𝑘

= 0, �̂� (𝑏+1)
𝑘

, . . . , �̂�
(𝐿)
𝑘

| 𝑌 ( 𝑗)
𝑘

= 𝑦

)
(7)

= 𝛼

2𝑏−1∑︁
𝑖=0

𝑃𝑍

((
1 − 2�̂� (𝐿)

𝑘

)
·
(
𝑖 +

𝐿−1∑︁
𝑏′=𝑏+1

�̂�
(𝑏′)
𝑘

· 2𝑏
′

)
− 𝑦

)
(8)

and

𝑃

(
𝑄

(𝑏)
𝑘

= 1 | 𝑌 ( 𝑗)
𝑘

= 𝑦, �̂�
(𝑏+1)
𝑘

, . . . , �̂�
(𝐿−1)
𝑘

)
= 𝛼𝑃

(
𝑄

(𝑏)
𝑘

= 1, �̂� (𝑏+1)
𝑘

, . . . , �̂�
(𝐿−1)
𝑗

| 𝑌 ( 𝑗)
𝑘

= 𝑦

)
(9)

= 𝛼

2𝑏−1∑︁
𝑖=0

𝑃𝑍

((
1 − 2�̂� (𝐿)

𝑘

)
·
(
𝑖 + 2𝑏 +

𝐿−1∑︁
𝑏′=𝑏+1

�̂�
(𝑏′)
𝑘

· 2𝑏
′

)
− 𝑦

)
(10)

where 𝑃𝑍 is given in (5), and where 𝛼 is a normalization
coefficient which can be calculated from the condition that the
sum of (8) and (10) equals 1. In addition, the last equalities
in (8) and (10) are deduced from (3).

In the above expressions, the probability of 𝑄
(𝑏)
𝑘

depends
on previous decoded bits �̂�

(𝑏+1)
𝑘

, · · · �̂� (𝐿)
𝑘

. Note that, here we
know that every bit is perfectly decoded, i.e., �̂�

(𝑏)
𝑘

= 𝑄
(𝑏)
𝑘

since the decoder is simulated during the coding process, and
the codeword length 𝑚 (𝑏, 𝑗) is chosen so as to satisfy this
condition.

Finally, a concurrent strategy would consist of using non-
binary LDPC codes with alphabets of 2𝐿 symbols. But the
optimal non-binary Belief Propagation LDPC decoder has a
complexity proportional to 𝑛𝐿 log2 (𝐿) [20], while our solution
with binary LDPC codes has a complexity proportional to 𝑛𝐿.
For instance, for 𝐿 = 9 quantization bits, our solution reduces
the complexity by a factor 3 compared to using non-binary
LDPC codes.

C. Pre-estimation strategy

In the bit-plane coder, the minimum codeword length is
given by a value 𝑚min, which is imposed by the rate-adaptive
LDPC code construction method of [18]. This means that the
minimum compression rate is given by 𝑚min/𝑛. For instance,
in the code construction we consider in our simulations,
𝑚min/𝑛 = 1/32. We propose the following pre-estimation
strategy in order to further reduce this rate.

Sometimes, the bit plane 𝑄 (𝑏) can be entirely deduced from
previously decoded bit planes and from 𝑌 ( 𝑗) . Therefore at the
encoder, we first check whether estimating each symbol bit
𝑄

(𝑏)
𝑘

as

�̂�
(𝑏)
𝑘

= max
𝑠∈{0,1}

𝑃

(
𝑄

(𝑏)
𝑘

= 𝑠 | 𝑌 ( 𝑗)
𝑘

= 𝑦, �̂�
(𝑏+1)
𝑗

, . . . , �̂�
(𝐿)
𝑗

)
(11)

allows to perfectly reconstruct �̂�
(𝑏)

without any need for de-
coding. If this condition is verified, the transmitted codeword
𝑈 (𝑏, 𝑗) is simply set as 0 and the corresponding transmission
rate is equal to 0. This pre-estimation step will allow to greatly
reduce the transmission rate, especially in cases where 𝑋 is
close to 𝑌 ( 𝑗) . In order to indicate to the decoder whether the
pre-estimation step is sufficient to reconstruct �̂�

(𝑏)
, we add a

flag bit to the coded bitstream.

D. Rate evaluation

The performance of our practical ExtSC bit-plane coding
scheme can be evaluated by calculating the transmission
and storage rates as follows. When side information 𝑌 ( 𝑗) is
available at the decoder, the transmission rate of the 𝑏-th bit
plane 𝑅

( 𝑗)
𝑏

and the overall transmission rate 𝑅
( 𝑗)
pract are

𝑅
( 𝑗)
𝑏

=
𝑚

( 𝑗)
𝑏

+ 1 + 𝑣1 + 2𝑣2

𝑛
, (12)

𝑅
( 𝑗)
pract =

𝐿∑︁
𝑏=0

𝑅
( 𝑗)
𝑏

. (13)
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Fig. 1. Transmission rate comparison between Laplacian model and 𝑄-ary
symmetric model, with and without pre-estimation strategy
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Fig. 2. Transmission rate comparison between Laplacian model and 𝑄-ary
symmetric model, with and without parameter quantization.

where in 𝑅
( 𝑗)
𝑏

, the value 1 comes from the flag bit due
to pre-estimation, and 𝑣1 + 2𝑣2 gives the number of bits
needed to transmit the 𝑄-ary symmetric model parameters
(𝑞 𝑗 , 𝑍

( 𝑗)
min, 𝑍

( 𝑗)
max). In addition, the storage rate 𝑆𝑏 of the 𝑏-th

bit plane and the total storage rate 𝑆pract are

𝑆𝑏 = max
𝑗∈È1,𝐽É

𝑅
( 𝑗)
𝑏

(14)

𝑆pract =

𝐿∑︁
𝑏=0

𝑆𝑏 . (15)

Finally note that to achieve these rates, the proposed scheme
needs to simulate the 𝐿 LDPC decoders at the encoder part,
in order to ensure that zero-error rate is achieved. Therefore,
our method is especially dedicated to applications where the
encoding can be performed offline, like in video streaming. In
the following experimental section, we compare these practical
rates to the theoretical rates provided in Section II.

V. EXPERIMENTS

The following experiments have been conducted with the
“pano_aaaaajndugdzeh” image of the SUN360 database [21]
processed with the practical ExtSC scheme presented in [13].

This scheme encodes a 360◦ image (in equirectangular format
[22]) such that only a subpart of it (the one watched by a client)
can be extracted and decoded. The 360◦ image is divided into
small blocks (32 × 32 pixels), each of them corresponding
to a source 𝑋 . Then, according to the current and previous
requests of the user, some neighboring blocks are available at
the decoder and provide an estimate 𝑌 ( 𝑗) of the current block,
see [13] for details about how the estimation is performed. This
leads to one prediction per possible set of neighboring blocks.
When a client observes the 360◦ image in a given direction,
it requires a set of blocks in the image. The requested blocks
are decoded in an optimized order which depends on client’s
head position. In this causal decoding process, each block is
predicted using the already decoded blocks, corresponding to
one of the anticipated 𝑌 ( 𝑗) . The server simply has to extract
and transmit the proper codeword. We precise that the 𝑋 and
𝑌 ( 𝑗) described above correspond to transformed and quantized
versions of the original sources and predictions.

We insert the lossless coding method developed in this paper
into the previous full coding scheme for 360◦ images. We
then evaluate the proposed 𝑄-ary symmetric model against the
conventional Laplacian model, as well as the pre-estimation
strategy. For this, we first perform a rate comparison over 1000
blocks 𝑋 taken from the 360◦ image, each of length 𝑛 = 1024
and with either 𝐽 = 8 or 𝐽 = 12 side information blocks 𝑌 ( 𝑗) .
For each considered block 𝑋 , we consider 𝐿 = 9 quantization
bits, and we apply the incremental coding scheme developed
in this paper, and measure the obtained transmission rate for
each side information 𝑌 ( 𝑗) .

For performance comparison, we consider two different
setups. In Figure 1, we assume that the parameter values
estimated at the encoder are known in full-precision at the de-
coder, and we compare the average transmission rates obtained
under the 𝑄-ary model and under the Laplacian model. In both
cases, we also evaluate the transmission rate without and with
the pre-estimation strategy, by taking into account extra-rate
needed by the pre-estimation step. We first observe a clear
gain at considering the 𝑄-ary symmetric model, compared to
the Laplacian model. We also see that pre-estimation improves
the transmission rates by approximately 0.1 bits/symbol. Then,
Figure 2 always considers pre-estimation, and evaluates the
effect of parameter quantization on the transmission rate. In
the 𝑄-ary symmetric model, we consider that the value of
𝑞 is quantized on 𝑣1 = 3 bits, and that the values of 𝑍min
and 𝑍max are quantized on 𝑣2 = 9 bits. In the Laplacian
model, we assume that the scaling parameter is quantized on 8
bits. We see that, even with parameter quantization, the 𝑄-ary
symmetric model is still the best, and we observe a negligible
performance loss due to parameter quantization.

In order to confirm these results, we now perform a rate-
distortion analysis over 6334 blocks 𝑋 of length 𝑛 = 1024,
each with either 8 or 12 side information blocks. Figure 3 (a)
shows the distortion in PSNR with respect to the transmission
rate in KB, and Figure 3 (b) represents the distortion with
respect to the storage rate in MB. These two curves confirm
the benefits of the proposed 𝑄-ary model and pre-estimation
strategy with respect to the conventional Laplacian model
without pre-estimation. At low PSNR, though, the bitrate for
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Fig. 3. Rate-distortion results for encoding spherical images with ExtSC. The user requests sub part of the whole image. (a) Transmission rate-distortion
curve. (b) Storage-distortion curve.

TABLE I
BD-R (TRANSMISSION RATE) AND BD-S (STORAGE) MEASURES (IN

PERCENT) RELATIVE TO THE CLASSICAL LAPLACIAN SCHEME.

Laplacian + pre-estimation 𝑄-ary 𝑄-ary + pre-estimation
BD-S 1.94 -16.48 -14.39
BD-R -8.45 -24.67 -34.00

storage is slightly penalized by the pre-estimation strategy.
In addition, the bitrate gains averaged over the whole PSNR
range, called Bjøntegaard measures, are listed in Table I, where
the classical Laplacian model with no pre-estimation is taken
as a reference. Negative values represent compression gain.
Results show that the two proposed strategies (𝑄-ary and pre-
estimation) save 14% and 34% of storage and transmission
rate respectively.

VI. CONCLUSION

In this paper, we analyzed and improved an extractable
coding scheme based on symbol binarization, which allows
to reduce the decoding complexity. We then introduced a new
statistical model, called 𝑄-ary symmetric, which achieves a
better tradeoff between the model description cost and the data
representation cost, than the more common Laplacian model.
Finally, we developed a pre-estimation strategy, which helps
avoid the need to store/send any data for many bitplanes.
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