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ABSTRACT

Kalman filters are widely used for real-time estimation
of dynamic systems, and they sometimes need to be imple-
mented on energy-constrained devices. A Kalman filter im-
plementation from unreliable memories is considered, where
the flipping probability of a bit in a memory cell directly de-
pends on its energy consumption. The degradation in estima-
tion performance caused by the noise in the memory is theo-
retically investigated. Updated equations are then developed
for the Kalman filter, taking into account the new source of
noise from the unreliable memory. Finally, a method is pro-
posed to optimize the bit energy allocation in the memory,
and it is shown from numerical simulations that this method
allows for important energy gains.

Index Terms— Kalman filter, Energy-efficiency, Unreli-
able memory

1. INTRODUCTION

Kalman filtering is a linear quadratic method which uses a
set of recursive equations to estimate the state of a variable
from noisy measurements. The Kalman filter has been ap-
plied in a variety of areas such as tracking and navigation of
vehicles [1], estimation of the state of charge of batteries [2],
or 3D scene reconstruction in computer vision [3], and a va-
riety of Gaussian [1, 2, 3] and non-Gaussian [4] models have
been considered. Kalman filters are sometimes implemented
on battery-constrained systems [5, 6]. Therefore, designing
a more energy-efficient Kalman filter could improve the esti-
mation performance when dealing with a constrained energy
budget.

Kalman filtering can be quite computationally intensive
and most existing work focus on reducing its complexity and
making it more computationally efficient, see e.g. [7, 8] for
FPGA implementations, and [9] for a recent ASIC implemen-
tation. Generally speaking, an approach to decrease the en-
ergy consumption of a hardware implementation consists of
reducing its power supply [10]. But this can create unreli-
ability in the system due to a high level of faults occurring
in memories or during computations. Some algorithms such
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as neural networks [11] or hypothesis testing [12] can inher-
ently tolerate a certain level of faults. But for others these
faults cause a performance degradation that needs to be com-
pensated. It was proposed to overcome this loss of perfor-
mance, either using hardware modifications [13] or algorith-
mic modifications such as adding redundancy in the system
with algorithmic noise tolerance [14]. These strategies have
been applied into different applications such as digital signal
processing systems [15] and neural networks [16]. To date,
Kalman filtering implemented on unreliable hardware has not
been studied in the literature.

In this work, we study Kalman filters implemented with
an unreliable memory. The focus on memory is motivated by
the fact that fetches from memory can consume more than a
hundred times more energy than integer operations [17]. Fur-
thermore, unreliable memories were shown to improve the
energy efficiency of algorithms such as binary recursive esti-
mation [18] and deep neural networks [19, 20]. These works
all rely on the statistical model of [10], which relates the level
of noise in the memory cells to the energy consumption of the
memory. This statistical model was also used in [21] to opti-
mize the energy consumption of an unreliable memory while
satisfying a performance criterion on the Mean-Squared Error
(MSE) on a word stored in the memory.

Using the model from [10] and the MSE calculation
from [21], we aim to relate the energy consumption of the
memory with the performance of the Kalman filter, measured
here by the variance of its estimation error. After describing
the Kalman filter implemented from an unreliable memory
(Section 2), we derive updated recursive equations for the
Kalman filter, so as to take into account the memory noise.
This also provides us a relation between the estimation error
of the Kalman filter and its energy consumption (Section 3).
We then use this relation in order to minimize the energy con-
sumption of the filter under the constraint of a desired level of
performance. We propose a method to compute the optimal
allocation of energy supply across the memory cells so as to
minimize the total energy needed by the memory (Section 4).
Simulation results show that this method can provide large
gains in energy efficiency (Section 5).



2. FAULTY KALMAN FILTER

We first review how to use the Kalman filter in order to esti-
mate dynamic state variables from noisy measurements. We
then describe the considered quantization model of the filter
and its implementation using an unreliable memory.

2.1. The Kalman filter

Consider a linear dynamic variable x ∈ Rc described by a
process

xk+1 = Fxk + uk , (1)

where xk is the state vector of the process at step k, F is
the c × c state transition matrix, and uk ∈ Rc is an additive
white noise vector. The state of x is observed through the
measurement vector y ∈ Rd:

yk =Hxk + vk , (2)

where H is the d× c measurement model and vk ∈ Rd is an
additive white noise on the measurements, independent from
the model noiseuk. The covariance matrices of the noise vec-
tors uk and vk are known and denotedQ andR, respectively.

The Kalman filter recursively estimates the successive
states xk from the measurement vectors yk and from the
knowledge of the model, by minimizing the mean squared
error MSE(x) = E[‖xk − x̂k‖2] between xk and its esti-
mate x̂k at each step k. The filter can be decomposed in
two phases: the a priori estimation uses only the knowl-
edge of the model, and the a posteriori estimation takes into
account the measurements. Each phases computes both es-
timates x̂k+1|k (a priori phase) and x̂k+1|k+1 (a posteriori
phase) of the state vector xk+1 and the covariance matrices
of the estimations errors Pk+1|k = Cov[xk+1 − x̂k+1|k] and
Pk+1|k+1 = Cov[xk+1−x̂k+1|k+1]. The recursive equations
of the a priori estimation step are as follows:

x̂k+1|k = F x̂k|k , (3)

Pk+1|k = FPk|kF
t +Q , (4)

and the equations of the a posteriori estimation step are

Kk+1 = Pk+1|kH
t(HPk+1|kH

t +R)−1 , (5)
x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 −Hx̂k+1|k) , (6)
Pk+1|k+1 = (I −Kk+1H)Pk+1|k . (7)

In these equations, the covariance matrices P of size c × c
and the Kalman gain K of size c × d can be computed in
an offline manner. On the opposite, the terms x̂k+1|k and
x̂k+1|k+1 depend on the measurements yk and therefore need
to be computed online.

2.2. Quantized Kalman filter

In the rest of the article, the implementation of a Kalman filter
is studied using a fixed-point quantization model [22]. In this

model, each number can be represented as a signed integer
coded on (1+n+m) bits, where one bit is used for the sign,
n bits are used for the integral part of the number, and m bits
are used for its fractional part. A given number z can then be
written as z = (−1)zn

∑n−1
b=−m 2bzb, where zb ∈ {0, 1} are

the bits stored in memory to represent z. In our modeling of
the Kalman filter, all the variables (including matrices com-
ponents) involved in equations (3)-(7) are stored using this
quantization model, all with the same value of n and m.

The value of n is chosen so as to be able to represent
the biggest possible value in the system. In addition, the
value of m sets the resolution of the quantization, meaning
that the smallest difference between two quantized numbers is
2−m [22]. Generally speaking, if the resolution of the quan-
tization model is too low, the quantization error may become
too large, which could lead to an instability and divergence
of the filter [23]. Consequently, it is important to choose a
value of m that is large enough to avoid these issues. In our
simulations, we choose this value empirically to ensure the
convergence of the filter and also to ensure that the quantiza-
tion error is negligible compared to the total estimation error.

2.3. Unreliable implementation of the filter

In order to reduce its energy consumption, the Kalman filter
can be implemented using unreliable hardware. Here, we as-
sume, as in [18], that only the memory is faulty. In this case,
each memory cell has a bit flipping probability p. We use the
model of [10] to express p with respect to the memory cell
energy consumption e as

p = exp(−ea) , (8)

where a is a parameter that depends on the technology. We
assume that the bit errors from each memory cells are inde-
pendent.

Here we consider that only the estimates xk+1|k and
xk+1|k+1 are stored in unreliable memory cells. We make
this assumption since the other terms of the filter can be pre-
computed offline and stored on a reliable memory separately
in the system. Therefore, in the Kalman filter, instead of
having an estimate component x̂ we have a possibly incorrect
estimate component x̃. Using the binary representation given
in Section 2.2, we define an energy per memory cell vector:

e =
[
e−m, e−m+1, · · · , en−1

]
. (9)

A bit at position b stored in the unreliable memory can then
be expressed as x̃b = x̂b ⊕ γb where pb = Pr(γb = 1) =
exp(−eba) and ⊕ denotes modulo-2 addition. As the filter
would be particularly sensitive to a fault on the sign bit,we
consider a sign-preserving model, as in [18]. This can be im-
plemented by storing the sign bits in a reliable memory.

Using the above noise model defined at the bit-level x̃b,
we can define a noise model at the symbol level as x̃ = x̂+γ,



where γ is the noise introduced by the unreliable memory.
For the subsequent theoretical analysis, we assume to be in a
case where the mean of this memory noise is negligible with
respect to its variance Var[γ] = σ2

γ . This was verified in
the simulations. The covariance matrix Γ of a memory noise
vector γ of length c is defined as Γ = Cov[γ] = Icσ

2
γ , and

has size c × c. The matrix Γ is diagonal since the memory
noise variables within each component of quantized vectors
are considered independent.

With the error model defined in this section, we see that
the amount of errors introduced in the memory depends on the
energy supply of the system. In order to optimize the energy
consumption of the Kalman filter on an unreliable system, the
first step is to analyze how the noise in memory affects the
total estimation error of the filter.

3. THEORETICAL ANALYSIS

To analyze how the unreliable memory degrades the estima-
tion performance of the filter, we first compute the variance of
the memory noise σ2

γ . For this, we rely on previous work [21]
on the MSE of a faulty computation on unreliable memory
to compute the covariance matrix P ∗k+1,k+1 = Cov[xk+1 −
x̃k+1|k] of the total estimation error. This allows to evaluate
how the memory noise γ degrades the performance of the fil-
ter and to derive new Kalman filter equations that correct the
memory noise.

3.1. Variance of the memory noise

Using the assumption from Section 2.3 where we consider
that the bias E[γ] of the unreliable estimation is negligible in
front of the variance Var[γ] of the memory noise, this vari-
ance can be approximated by the MSE: E[(x̃ − x̂)2] ≈ σ2

γ .
Normally, the value of E[(x̃ − x̂)2] would depend on two
factors: the errors probabilities pb across the bits and the
probability distributions of the variables x which are stored
in memory. However, the latter has actually no impact on
the final result since, from [21, Claim 17], if pn−1 � 1

2 or
Pr (x̂b = x̂b′) ' Pr (x̂b 6= x̂b′) for any b 6= b′, then the MSE
E[(x̃− x̂)2] can be approximated as

σ2
γ = E[(x̃− x̂)2] ≈

n−1∑
b=−m

4bpb =

n−1∑
b=−m

4be−eba , (10)

where the last equality is obtained from the noise-vs-energy
model (8). Equation (10) gives us a relation between the noise
variance σ2

γ and the vector e of energy levels defined in (9).

3.2. Variance of the total estimation error

We now show how to recompute the covariance matrix
Pk+1,k of the estimation error ẽk+1|k taking into account
the noise in the memory. We denote ẽk+1|k the estimation

error on the faulty a priori estimate x̃k+1|k, and we denote
êk+1|k the estimation on the non faulty estimate x̂k+1|k.
The a-priori estimation error ẽk+1|k can then be written as
ẽk+1|k = xk+1 − x̃k+1|k and

ẽk+1|k = xk+1 − x̂k+1|k + γk+1|k

= êk+1|k + γk+1|k . (11)

To simplify the derivation we consider as an approximation
that the estimation error inherent from the filter êk+1|k and
the memory noise γk+1|k are independent. Using this hy-
pothesis, we recompute the new covariance matrix P ∗k+1,k =
Cov[ẽk+1,k] of the estimation error taking into account the
memory noise:

P ∗k+1,k = Cov[êk+1,k] + Cov[γ]

= FP ∗k,kF
t +Q+ Γ . (12)

Using the same notations and hypotheses, we apply the same
derivation to the a posteriori estimation phase:

ẽk+1|k+1 = xk+1 − x̂k+1|k+1 + γk+1|k+1 , (13)

and the covariance matrix Pk+1|k+1 of the a posteriori esti-
mation error ẽk+1|k+1 becomes

P ∗k+1|k+1 = (I −Kk+1H)P ∗k+1|k + Γ . (14)

Finally, we propose to use equations (12) and (14) in-
stead of (4) and (7) for the covariance matrices Pk+1|k and
Pk+1|k+1, which allow to compensate for a part of the mem-
ory noise. Moreover, due to the noise versus energy model
defined in equation (8), the covariance matrix P ∗k+1|k+1 of
the total estimation error can be computed based on the en-
ergy levels in the memory. This allows to optimize the energy
levels in the memory, as we now describe.

4. OPTIMAL ENERGY ALLOCATION

In this section, we propose to optimize the energy consump-
tion of the memory while satisfying a performance constraint
defined on the total estimation error of the filter. More pre-
cisely, we consider P ∗N |N that is the covariance matrix of the
total estimation error at stepN , whereN is chosen to be large
enough so that the filter can converge. We then use this matrix
as the performance criterion and build a matrix V of the same
size as P ∗N |N . The matrix V defines the desired performance
constraint and contains the maximum desired values for the
variances and covariances of estimation error on each com-
ponent. In our optimization, we consider that the parameters
m, n, used in the quantization are fixed. The optimization of
these parameters is left for future works.

We then introduce the following optimization problem:

min
e

etot =

n−1∑
b=−m

eb = 1
Te ,

s.t. P ∗N |N ≺ V and eb ≥ ethres ∀b ∈ J−m,n− 1K ,

(15)
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Fig. 1. Comparison between the simulated and theoretical
variance of the estimation error at step N = 250 using the
updated filter equations from Section 3.2 and the conventional
equations both on a unreliable system.

where≺ is a component-wise inequality between the two ma-
trices, and where the minimum is taken over all the energy
vectors e as defined in (9). The value ethres is the minimum
level of energy on each memory cell, so as to avoid undesired
effects such as circuit delays and energy leakage [10].

We derive the optimal solution to this problem by using
the Karush–Kuhn–Tucker conditions. From these conditions,
we show that the optimal energy level e∗b for bit b has expres-
sion:

e∗b =

{
ethres, if ν < 1

4ba
,

1
a log(4

baν), otherwise ,
(16)

where ν is a dual variable that balances the trade-off between
reducing the energy consumption and preserving the perfor-
mance of the system. The optimal vector e∗ can then be com-
puted using a water filling algorithm [21] for a fixed desired
performance V of the filter. With this optimal solution, we
see that the least significant bits have their energy adjusted to
the minimum possible energy level ethres. The energy levels
then increase logarithmically for each bit as their importance
increase.

5. NUMERICAL RESULTS

In this section, we want to verify the accuracy of the theoret-
ical analysis and also to study the potential gains in energy
when using an unreliable memory. In our simulations, we
considered a simple tracking problem where the state vector
x was composed of two variables representing the position
and velocity of an object. Measurements y only consisted
of noisy observations of the position of the object. We then
measured the variance of the error on the estimation at a step
N = 250, thus giving enough time for the filter to converge
in normal conditions. All variables were quantized using the
format presented in Section 2.2 with n = 11 bits and m = 20
bits. The factor a in (8) was taken as a = 12.8 as in [19].
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Fig. 2. Comparison of the variance of the total estimation
error of the position at stepN = 250 between using a uniform
allocation of the energy across the bits and using the optimal
allocation (16).

Figure 1 compares the variance of the estimation error on
the position when using the conventional equations of the fil-
ter and when using the updated equations. It also verifies the
analytical results of Section 3 by comparing the theoretical
variance of estimation error with the one measured from sim-
ulations. Both curves were obtained with respect to differ-
ent total energy values etot. We see that at a low level of
energy, using the updated equations allows to better correct
the effect of the noise in memory. Moreover, the theoretical
curves computed using the updated covariance matrices illus-
trate that the theoretical derivation of Section 3.2 predicts ac-
curately the variance of the estimation error. To give an order
of magnitude, E[x250] ≈ 250.

We now study the effect of the optimal energy allocation
method proposed in Section 4. We compare the estimation
error ẽ250|250 after convergence of the filter when using a uni-
form energy allocation and when using the optimal energy al-
location. The results are shown in Figure 2 for different value
of energy etot. In this figure, we can see that in the case of an
optimal energy allocation, the system requires less than half
the energy of a memory with uniform allocation to achieve the
same level of error as a conventional reliable system, which
confirms the interest of the proposed approach.

6. CONCLUSION

In this paper we studied the problem of Kalman filtering im-
plemented by using an unreliable memory. We showed how
to take the memory noise into account in the filter’s equations
so as to lower the performance degradation of the filter. We
then provided an optimal energy allocation for the bit cells
of the memory under a performance constraint. Simulations
have shown that using this optimal energy allocation, the fil-
ter can achieve the same accuracy as a reliable filter with less
than half the energy needed when using a uniform energy al-
location.
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