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Self-Corrected Belief-Propagation Decoder for
Source Coding with Unknown Source Statistics

Elsa Dupraz, Mohamed Yaoumi

Abstract—This paper describes a practical Slepian-Wolf source
coding scheme based on Low Density Parity Check (LDPC)
codes. It considers the realistic setup where the parameters of
the statistical model between the source and the side information
are unknown. A novel Self-Corrected Belief-Propagation (SC-BP)
algorithm is proposed in order to make the coding scheme robust
to incorrect model parameters by introducing some memory
inside the LDPC decoder. A Two Dimensional Density Evolution
(2D-DE) analysis is then developed to predict the theoretical
performance of the SC-BP decoder. Both the 2D-DE analysis
and Monte-Carlo simulations confirm the robustness of the SC-
BP decoder. The proposed solution allows for an important
complexity reduction and shows a performance very close to
existing methods which jointly estimate the model parameters
and the source sequence.

Index Terms—Slepian-Wolf source coding, LDPC codes, Density
Evolution

I. INTRODUCTION

In Slepian-Wolf source coding [1], a source X is compressed,
given that a side information Y is only observed by the
decoder. If X and Y are statistically dependent, the coding
rate is reduced compared to the case without side information.
The Slepian-Wolf setup has regained attention recently, due
to its application in modern source coding problems such as
Distributed Source coding [2], Multi-View video coding [3],
or Massive Random Access to data [4].

Most practical Slepian-Wolf source coding schemes rely on
channel codes such as Low Density Parity Check (LDPC)
codes [3]–[5], and require a precise knowledge of the parame-
ters of the joint probability distribution P (X,Y ). To estimate
these parameters, solutions based on a feedback link [6] do
not cause any rate loss compared to the case where the source
parameters are known, but they increase the decoding latency.
Alternatively, unknown parameters can be estimated together
with the source sequence by using Expectation-Maximization
(EM) [7], [8] or Particle Filtering [9] methods at the decoder.
However, these methods are penalized by an important com-
plexity since they all require running several times the LDPC
decoder. In this paper, we instead propose to run the LDPC
decoder once, and to work on improving its robustness against
unknown model parameters.
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In the family of LDPC decoders, the Belief Propagation (BP)
decoder [10] is the most powerful, but it is not robust against
incorrect initial Low Likelihood Ratios (LLR), which are
calculated from the joint probability distribution P (X,Y ).
The Min-Sum (MS) decoder [11] is less efficient than BP,
but it shows more robustness against incorrect initial LLR
values. The MS decoding performance can be improved by
using empirical parameters (scaling, offset, etc.) [11], but their
optimal values depend on the parameters of P (X,Y ). Alter-
natively, [12] introduced a Self-Correction (SC) mechanism
into the MS decoder. SC compares the signs of messages
exchanged in the decoder at successive iterations, and erases
messages in cases of sign switching. The subsequent SC-
MS decoder does not depend on any empirical parameter and
shows a clear performance improvement compared to the MS
decoder, while preserving its robustness property. However,
SC-MS still shows a small performance loss compared to
BP. In this paper, we propose to apply the SC mechanism
directly into the BP decoder, hoping that this will improve the
robustness of BP against incorrect initial LLRs.

We aim to evaluate the performance of the proposed SC-BP
decoder not only from Monte Carlo simulations, but also from
a theoretical analysis. The theoretical performance of LDPC
decoders is commonly investigated by the Density Evolution
(DE) method [10], which evaluates the successive probability
distributions P(u(`)) of decoder messages u(`) at iteration `.
However, the SC mechanism introduces some memory inside
the decoder, which standard DE fails to capture. This is the
reason why, to the best of our knowledge, there does not exist
a DE analysis for the original SC-MS decoders. In [13], a
generic DE method was proposed for LDPC decoders with
memory. But this DE method is very complex, as it requires
to evaluate the joint probability distribution P(u(1), · · · , u(`))
of the decoder messages from first to current iteration.

In this paper, we introduce a simpler Two Dimensional (2D)
DE analysis that allows to predict the asymptotic performance
of SC-MS and SC-BP decoders, by only evaluating the joint
probability distribution P(u(`−1), u(`)) of messages at two
successive iterations. Although the proposed 2D-DE analysis
is an approximation of the DE method of [13], we show
that it accurately predicts the performance of SC-MS and
SC-BP decoders. Our 2D-DE analysis then shows that the
SC-BP decoder is completely robust against incorrect LLR
initialization, unlike the standard BP decoder. Monte Carlo
simulations confirm these results, and show that the proposed
SC-BP decoder has a performance very close to the joint
estimation methods of [7], [8], while allowing for an important
complexity reduction compared to these joint methods.
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II. SLEPIAN-WOLF SOURCE CODING

A. Source model

The Slepian-Wolf source coding scheme aims to compress the
source X given that the side information Y is only observed
by the decoder. We assume that the sources X and Y generate
sequences of independent and identically distributed (i.i.d.)
symbols (X1, · · · , Xn) and (Y1, · · · , Yn), respectively. The
source X is binary, with probability distribution given by
p0 = P (X = 0). The side information Y takes its values in
an alphabet Y , which is either discrete or continuous. The side
information symbols are generated according to a conditional
probability distribution Pθ(Y |X), where θ represents the set
of unknown parameters.

The generic model described below can be specified for a large
range of distributions. We now describe two examples which
will be considered in the simulation section of the paper. In
both models, we assume as in [2], [14], that there exists a
random variable Z, independent of X , such that Y = X̃ +Z,
where X̃ = 1 − 2X and X̃ ∈ {−1, 1}. Then, in the first
model, we consider that Z is Gaussian with mean 0 and
unknown variance σ2, which gives θ = {σ2}. In this Gaussian
model, the Signal-to-Noise ratio (SNR) can be expressed as
SNR = 1/σ2. In the second model, we consider that Z is
Laplacian with mean 0 and unknown scale parameter λ, which
gives θ = {λ}. In this case, we get SNR = 1/2λ2. We
consider these two models because they are very common
in the main two applications of the Slepian-Wolf setup: the
additive Gaussian model is often used in Wireless Sensor
Networks applications [2], while the additive Laplacian model
is very standard in Distributed Video Coding applications [14].
It is worth noting that the issue of parameter uncertainty was
pointed out in both applications, see e.g., [6]–[9].

B. Information Theory results

We now discuss existing information-theoretic results [1], [15],
for Slepian-Wolf source coding. Denote by Hθ(Y |X) the
conditional entropy of Y knowing X , for a given θ. If θ is
known by both the encoder and the decoder, the minimum
achievable rate R? needed to transmit X losslessly to the
decoder is given by R? = Hθ(X|Y ) bits/symbol [1], where
Hθ(X|Y ) ≤ H(X) whatever the value of θ. On the opposite,
if θ is unknown, the minimum achievable rate R is given by
R = maxθHθ(X|Y ) bits/symbol [15], which corresponds to
the worst possible case over θ. According to [15], the fact that
R ≥ R? comes from the uncertainty about θ at the encoder.
The decoder, on the other hand, can perfectly deal without the
knowledge of θ, see [7]–[9].

III. SELF-CORRECTED BELIEF-PROPAGATION DECODER

A. LDPC codes for source coding

Denote by H the binary parity check matrix of size m × n
(m < n) of an LDPC code. Assuming that H is full rank,
the source coding rate is R = m/n. The parity check matrix
H can be equivalently represented by a bipartite Tanner graph
that connects n Variable Nodes (VN) to m Check Nodes (CN).

We use dv (respectively dc) to denote the degree of VN v ∈
J1, nK (respectively of CN c ∈ J1,mK).

Denote by xn the source sequence of length n to compress. A
codeword sm of length m is then obtained as sm = Hxn [5].
When θ is known, the decoder usually relies on the BP algo-
rithm which aims to recover the source sequence xn from the
received codeword sm and from the side information sequence
yn [5]. When θ is unknown, existing coding schemes [7]–
[9] apply alternating methods that successively estimate the
parameter θ and the source sequence xn over several iterations.
These alternating methods however require running the BP
decoder several times. Here, we instead propose a novel LDPC
decoder robust to incorrect values of θ.

B. Self-Corrected Belief-Propagation decoder

We now introduce the proposed LDPC SC-BP decoder, which
consists of a minor modification of the SC-MS decoder
introduced in [12] in the context of channel coding.

In the SC-BP decoder VN messages are initialized as in the BP
decoder [8], with Log-Likelihood Ratio (LLR) values

u0 = log
P(X = 0)Pθ(y|X = 0)

P(X = 1)Pθ(y|X = 1)
(1)

The expression in (1) depends on the parameter value θ. For
instance, for the Gaussian model described in Section II, u0 =
log p0

1−p0 +αy, where α = 2/σ2. And for the Laplacian model,
u0 = log p0

1−p0 + α(|y+ 1| − |y− 1|), where α = 1/λ. If the
parameters σ2 or λ are unknown, we set α to arbitrary values
and we say that the decoder is mismatched.

We then consider that the decoder works in a maximum
of L iterations. At each iteration ` ∈ J1, LK, the (dc −
1) incoming messages to a CN of degree dc are denoted
t(`) = (t

(`)
1 , · · · , t(`)dc−1), and the CN mapping Φc has expres-

sion

Φc(t
(`)) = (1−2s)

((
1 +

dc−1∏
v=1

tanh
t
(`)
v

2

)
/

(
1 −

dc−1∏
v=1

tanh
t
(`)
v

2

))
(2)

where s is the codeword bit value at the CN. Equation (2)
corresponds to the standard CN mapping for the BP decoder
applied to Slepian-Wolf source coding [5].

Then, incoming messages to a VN of degree dv are denoted
u(`) = (u0, u

(`)
1 , · · · , u(`)

dv−1), where u0 is given in (1). Output
VN messages are calculated in two steps. We first compute
candidate messages x(`+1) = Φv(u

(`)) from a VN mapping
Φv given by

Φv(u
(`)) = u0 +

dv−1∑
c=1

u(`)
c . (3)

We then apply the SC mapping Φsc defined as

Φsc(x
(`), x(`+1)) =

{
0 if sign(x(`+1)) 6= sign(t(`))
x(`+1) otherwise.

(4)
In the above expression, t(`) = Φsc(x

(`−1), x(`)) is the output
of the SC mapping at previous iteration. By convention, the
value 0 is assumed to be both positive and negative, which
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means that if t(`) = 0, then t(`+1) = x(`+1). In addition, the
SC mapping (4) is only applied from iteration 2. At iteration
1, we always set t(1) = x(1). The SC mapping (4) constitutes
the main difference between the standard BP decoder and the
proposed SC-BP decoder, although the SC mapping (4) was
previously introduced for a MS decoder in [12].

IV. DENSITY EVOLUTION ANALYSIS

DE allows to predict the performance of an LDPC decoder
under the assumption that the codeword length tends to
infinity [10]. DE is often used to theoretically evaluate the
performance of LDPC decoders, as it allows to both validate
empirical results observed from Monte Carlo simulations, and
to optimize the code and decoder parameters in an efficient
way [10]. Standard DE [10] iteratively calculates marginal
probability distributions P(u(`)) of messages exchanged in the
decoder. However, evaluating only the marginal probability
distributions may not be accurate for SC-MS and SC-BP de-
coders, because the SC mapping (4) introduces some statistical
dependencies between messages at successive iterations. A
general DE method was proposed in [13] for LDPC decoders
with memory, but this general method needs to be specified for
particular LDPC decoders. As examples, [13] only considers
LDPC decoders with large memory, where e.g., messages
at iteration ` were calculated from all previous messages
from iteration 1 to ` − 1. For these complex decoders, the
DE method of [13] requires to express the successive joint
probability distributions P(u(1), · · · , u(`)) of messages from
the first iteration to the current iteration `. This makes the
analysis intractable, since this requires to evaluate probability
distributions of vectors of length `.

In this part, we propose a 2D-DE analysis for the SC-BP
decoder, by only calculating the joint probability distributions
P(u(`), u(`+1)) of messages at successive iterations. The in-
troduced 2D-DE analysis is a tractable approximation of the
general DE method of [13]. In this paper, the 2D-DE analysis
is described for the SC-BP decoder, but it can be easily applied
to the SC-MS decoder, by considering the MS mapping instead
of the BP mapping in (2).

A. DE assumptions

In order to obtain tractable DE expressions, we consider that
the messages exchanged in the decoder are quantized on q bits,
where q is large enough so as to ensure that the performance
of the quantized decoder is very close to the performance of
the infinite-precision decoder [10]. In addition, we consider
the main two assumptions of standard DE [10], [13]: (i) since
we consider an asymptotic codeword length, we assume that
the code is cycle-free, (ii) since all the VN, CN, SC mappings
involved in the SC-BP decoder are symmetric, we consider
that the all-zero codeword was transmitted.

B. 2D-DE equations

We now provide the iterative 2D-DE equations for the SC-
BP decoder. At iteration `, the joint probability distribution

P(u(`), u(`+1)) of CN output messages is evaluated as

P(u(`), u(`+1)) =
∑

t(`),t(`+1):

Φc(t(`))=u(`)

Φc(t(`+1))=u(`+1)

dc−1∏
v=1

P(t(`)v , t(`+1)
v )

where Φc is the CN mapping in (2) and P(t
(`)
v , t

(`+1)
v ) is the

joint probability distribution of CN input messages t(`)v , t
(`+1)
v .

Then, the joint probability distribution P(x(`), x(`+1)) of VN
output messages is given by

P(x(`), x(`+1)) =
∑

u(`),u(`+1):

Φc(u(`))=x(`)

Φc(u(`+1))=x(`+1)

P(u0)

dv−1∏
c=1

P(u(`)
c , u(`+1)

c )

where Φv is the VN mapping in (3). Finally, the joint probabil-
ity distribution P(t(`), t(`+1)) of SC output messages is given
by

P(t(`), t(`+1)) =
∑

x(`−2),x(`−1),x(`):

Φsc(x(`−2),x(`−1))=t(`)

Φsc(x(`−1),x(`))=t(`+1)

P(x(`−2), x(`−1), x(`)).

where the SC mapping is given in (4). We then perform
the following simplification, in order to tag along with a 2D
analysis:

P(x(`−2), x(`−1),x(`)) = P(x(`−2), x(`−1))P(x(`)|x(`−1), x(`−2))

≈ P(x(`−2), x(`−1))P(x(`)|x(`−1)), (5)

and we calculate the conditional probability P(x(`)|x(`−1))
from the joint distribution P(x(`−1), x(`)). Finally, the decoder
error probability at iteration ` is evaluated from P(x(`−1), x(`))
as

P (`)
e =

∑
x(`−1)

1

2
P(x(`−1), 0) +

∑
x(`)<0

P(x(`−1), x(`))

 .

In order to obtain the approximation in (5), we considered
that P(x(`)|x(`−1), x(`−2)) ≈ P(x(`)|x(`−1)) by assuming the
following Markov chain: x(`−2) → x(`−1) → x(`) between the
VN outputs at successive iterations. This assumption allows
to greatly simplify the DE analysis while still capturing the
SC relation between x(`−1) and x(`). In the next section, we
numerically evaluate the accuracy of the proposed 2D-DE, and
show that considering only the dependency with messages
from iteration ` − 1 is sufficient to accurately predict the
performance of the SC-BP decoder.

V. NUMERICAL RESULTS

A. DE analysis

In this section, we consider the additive Gaussian model
described in Section II-A, and four regular (dv, dc)-codes
given in Table I. We use DE to evaluate the theoretical
performance of five LDPC decoders: BP, MS, offset MS, SC-
MS, and the proposed SC-BP decoder. In the DE analysis, we
consider L = 100 iterations, and q = 6 quantization bits. For
each considered code and decoder, we evaluate the threshold
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Code BP BP mis. MS MS mis. MS optim. MS optim. mis. SC-MS SC-MS mis. SC-BP SC-BP mis.
(3,4) 1.12 1.52 2.12 2.09 1.16 2.87 1.16 1.14 1.04 1.08
(3,5) 0.99 1.27 1.71 1.64 1.05 2.18 1.02 1.02 0.95 0.97
(3,6) 1.20 1.38 1.74 1.68 1.23 2.12 1.21 1.21 1.16 1.18
(4,5) 2.74 2.82 4.00 4.03 2.74 2.90 2.75 2.75 2.59 2.57

TABLE I
THRESHOLD COMPARISON OF SEVERAL LDPC DECODERS UNDER THE GAUSSIAN MODEL WITH AND WITHOUT MISMATCH. ALL THE THRESHOLD

VALUES ARE IN DB.
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Fig. 1. Comparison between BER performance predicted by FL-DE method
of [16] and between decoder performance evaluated from Monte Carlo
simulations, for the (3, 6)-code under the Gaussian model

as the minimum SNR value for which the final decoder error
probability P (L)

e < 10−6. The decoder error probabilities are
calculated from standard DE [10] for the BP, MS, and offset
MS decoders, and from the 2D-DE of Section IV for SC-MS
and SC-BP decoders.

Table I provides the thresholds obtained when the decoders are
initialized with the correct SNR value, and the thresholds in the
mismatched setup where the decoders are always initialized
with an arbitrary value α = 4, see Section III-B. In particular,
for the offset-MS decoder, the offset parameter is optimized
from this mismatched SNR value. We first observe that in the
standard setup without mismatch, the decoders show threshold
values very close to each other, except for the MS decoder
which has a degraded performance. Then, in the mismatched
setup, the BP decoder and the offset MS decoder show an im-
portant performance degradation compared to the case without
mismatch. On the opposite, the thresholds for MS, SC-MS,
and SC-BP decoders remain approximately the same, which
confirms their robustness in the mismatched setup. Finally, the
SC-BP decoder has the best threshold values.

B. FL-DE analysis

We now verify the accuracy of the 2D-DE analysis introduced
in Section IV. For this, we rely on the Finite-Length Density
Evolution (FL-DE) method proposed in [16]. This method
allows to estimate the finite-length performance of an LDPC
decoder, from a formula that depends on the asymptotic error
probabilities provided by DE. Although this method does not
take into account the effect of cycles, [16], [17], show that it
accurately predicts the decoder performance measured from
Monte Carlo simulations, for long enough codewords. The
formula proposed in [16] can be straightforwardly used in our
case, by using in the formula the asymptotic error probabilities
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Fig. 2. BER performance of the irregular code of length N = 8192, for dif-
ferent LDPC decoders under the Gaussian model, with and without mismatch.
The curves for SC-BP with and without mismatch are superimposed.

provided by 2D-DE. With the Gaussian model, we consider a
regular (3, 6)-code and a codeword length N = 104. We focus
on four LDPC decoders: BP, MS, SC-MS, SC-BP, initialized
with the correct SNR values. For each decoder, we calculate
the Bit Error Rate (BER) predicted by the FL-DE method
of [16], applied either with standard DE (for BP and MS
decoders), or with the proposed 2D-DE analysis (for SC-MS
and SC-BP decoders).

Figure 1 provides the BERs predicted by the FL-DE method,
and the BERs measured from Monte Carlo simulations. For BP
and MS decoders, we see a gap of less than 0.01dB between
the two curves, while for SC-BP and SC-MS, we see a gap of
less than 0.05dB. These results confirm that the proposed 2D-
DE analysis can be used to predict the performance of the SC-
BP and SC-MS decoders. We also see that, in accordance with
the threshold values of Table I, the proposed SC-BP decoder
shows a slight performance gain compared to the standard BP
decoder.

C. Monte Carlo simulations

We now evaluate the performance of the SC-BP decoder from
Monte Carlo simulations, for the Gaussian and Laplacian
models described in Section II-A. For the Gaussian model,
we set L = 50 iterations, and we consider an irregular,
protograph-based LDPC code of length N = 8192, with
protograph S0 optimized in [17] for good performance over a
Gaussian channel. We consider four LDPC decoders: MS, BP,
SC-MS, and SC-BP, as well as the method of [7] which jointly
estimates the unknown parameter θ and the codeword. For this
method, we set K = 3 steps of joint estimation. Figure 2
represents the BER with respect to SNR, for the Gaussian
model. For each considered decoder, we show the results for
the standard setup where the decoder knows the SNR value,
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Fig. 3. BER performance of (3,6)-code for different LDPC decoders under
the Laplacian model, with and without mismatch. The curves for SC-BP with
and without mismatch are superimposed.

and for the mismatched setup in which the decoder is always
initialized with arbitrary value α = 4. We observe that the
BP decoder shows an important performance degradation in
the mismatched setup. On the opposite, the SC-BP decoder
remarkably does not suffer from any performance loss in the
mismatched setup, and the SC-MS decoder is also robust to
mismatched parameters, as already observed in [12]. At the
end, the SC-BP decoder shows a performance very close to
the method of [7]. Finally, Figure 3 represents the BER with
respect to SNR, for the Laplacian model, for a regular (3, 6)-
code of length N = 104. In the mismatched setup, the decoder
is initialized with arbitrary value α = 4. In this case, we
observe that the SC-BP decoder has the same performance as
the method of [7].

D. Complexity Analysis

We now compare the complexity of four of the previously
considered decoding solutions: BP, SC-BP, SC-MS, and BP
with parameter estimation [7]. Since these decoders have
approximately the same CN complexity, we only compare the
complexity of the VN and SC operations. According to [17],
the VN mapping (3) requires 2dv additions. In addition, the
SC mapping (4) only consists of dv comparisons (one per
message). Therefore, BP requires 2dvL̃ VN operations, while
SC-BP and SC-MS need 3dvL̃ VN operations, where L̃ ≤ L is
the average number of iterations measured from simulations
(with a stopping criterion in the decoder). Then, since the
solution of [7] runs the BP decoder K times, the total number
of VN operations is given by 2dv

∑K
k=1 L̃k, where L̃k is the

average number of iterations at the k-th run.

We now numerically evaluate the number of VN operations
with the Gaussian model, by measuring the average number
of iterations L̃ and L̃k from Monte Carlo simulations. For the
regular (3, 6)-code and with the same decoder parameters as
in Section V-C, at SNR= 1.5dB, we get 167 operations for the
BP decoder, 221 for SC-BP, 236 for SC-MS, and 407 for BP
with parameter estimation [7]. For the irregular LDPC code
considered in Figure 2, at SNR=1dB, and by replacing dv by
the average VN degree in the above expressions, we get 322
operations for BP decoder, 371 for SC-BP decoder, and 750
for the solution of [7]. This shows the important complexity

reduction raised by the proposed SC-BP decoder.

VI. CONCLUSION

In this paper, we introduced a novel SC-BP LDPC decoder for
Slepian-Wolf source coding. We developed a 2D-DE analysis
for performance prediction of SC-based decoders. Both the
2D-DE analysis and the Monte Carlo simulations confirm
that the proposed SC-BP decoder outperforms existing BP
and SC-MS decoders in the mismatched setup. They also
show that SC-BP has the same performance has existing
joint estimation-decoding method, while allowing for a clear
complexity reduction.
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