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Abstract—Estimating the energy consumption of LDPC de-
coders is a long and difficult task due to the large number
of factors involved. Modern circuit synthesis tools can provide
a satisfactory estimation of the power consumption, but this
requires that the circuit be already implemented and it can take
hours to provide the estimate. Currently, no accurate models are
available to evaluate the decoding energy early in the design
process. We propose a high-level energy model for flip-flop
memory elements in LDPC architectures. The originality of the
model is that it can analytically evaluate the variation of the
energy due to the switching activity of the circuit gates, depending
on the probability mass function (PMF) of the circuit inputs.
Such PMFs are obtained through an adapted density evolution
method that we propose. Therefore, the energy can be profiled for
each decoding iteration and SNR value while considering several
architecture choices. We illustrate the validity of the model by
comparing the obtained energy estimates with measurements
based on circuit simulations.

Index Terms—LDPC, ASIC, density evolution, energy effi-
ciency.

I. INTRODUCTION

As communication speeds increase and data transmission
channels become more complex, the use of error-correction
codes becomes increasingly critical. Low-density parity-check
(LDPC) codes [1] are widely used in modern communication
systems such as 5G networks [2]. For future 6G networks,
preliminary studies consider that peak data rate will be up
to 50 times higher that of existing 5G networks [3]. There-
fore, there is a need for massively parallel and pipelined
hardware architectures, which raises the issue of their energy
consumption. This impacts the battery life of user devices
and the cost of electrical consumption in base stations for
the operators. Particularly, energy efficiency now becomes an
important metric for studies of 6G networks [3], and must
be taken into account when designing LDPC codes, hardware
architectures, and circuits.

Developing novel energy reduction techniques requires an
accurate understanding of how the code construction, de-
coding algorithm, and hardware architecture affect energy
consumption. Previous work studied the energy consumption
of coding schemes in the asymptotic regime as the block error
probability goes to zero [4], [5]. However, these results do not
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provide a way to optimize the energy consumption of finite-
length codes and decoders. Reference [4] also proposed a non-
asymptotic energy model for regular LDPC codes. Their model
however is based on post-layout simulations of specific circuit
architectures and does not take the actual switching activity
into account, which prevents using it to optimize the decoder
architecture. As such, there is a lack of accurate analytical
methods that can predict the energy consumption of an LDPC
decoder before it is fully implemented. Current methods are
mainly empirical, where accurate estimation of the energy
consumption requires time-consuming post-synthesis or post-
layout simulations to generate signal activities [6].

Therefore, we propose in this paper a model to analytically
estimate the energy consumption of LDPC decoders. As a first
step, we focus on the energy consumption of flip-flop (FF)-
based components such as registers and memories, since these
components represent most of the energy consumption of the
decoder [7]. The main originality of the approach is in the
proposal of a clock-gated FF energy model where switching
activity is taken into account. To predict the bit switching
probabilities, a density evolution (DE)-based methodology is
proposed. DE is a powerful analysis tool normally used for
predicting the bit-error rate (BER) performance of LDPC
decoders and designing good LDPC codes [8]. The proposed
method aims to adapt DE to predict the probabilistic behaviour
of signals in LDPC decoder circuits.

The rest of this paper is organized as follows. Section II
describes the offset min-sum (OMS) decoding algorithm and
its DE analysis. Section III proposes a novel energy model
for clock-gated FF based on bit switching probabilities. In
Section IV, these switching probabilities are evaluated through
novel DE-based methodologies adapted for most LDPC de-
coder architectures. The proposed energy model is then com-
pared and validated in Section V, with post-synthesis energy
measurements from a highly parallel ∆-update LDPC decoder
architecture. Finally, Section VI concludes this paper.

II. LDPC DECODER

A. Decoding algorithm

We consider an Additive White Gaussian Noise (AWGN)
channel described by yi = xi + wi, where yi is the channel
output, xi is the ith transmitted modulated symbol, and wi is
the additive Gaussian noise term of variance σ2. For simplicity,
BPSK modulation is considered. The received and quantized
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channel log-likelihood ratio (LLR) Li of the ith coded bit is
expressed as

Li = satQ

⌊
2αyi
σ2

+
1

2

⌋
, (1)

where yi is the received signal, σ2 is the noise variance, α is
a constant scaling factor, ⌊.⌋ is the floor operator and satQ is a
saturation operator which ensures that Li ∈ [−Q,Q], Q ∈ N∗

being the maximum LLR magnitude.
Most common LDPC decoding algorithms are variants

of the Sum-Product algorithm [9], in which messages are
iteratively sent between variable nodes (VNs) and check nodes
(CNs). Let us denote by γ

(ℓ)
i→j the check-to-variable (C2V)

message sent from CN i to VN j for decoding iteration
ℓ ≥ 0, and by λ

(ℓ)
j→i the V2C message sent from VN j to

CN i at iteration ℓ. Initially, we set γ
(0)
i→j = 0 ∀(i, j), and

λ
(0)
j→i = Li ∀j. In addition, Vi is the set of VN indices

connected to CN i, and Cj is the set of CN indices connected
to VN j. In this paper, we consider the widely used OMS
decoder [10], which can be formulated through the following
equations:

γ
(ℓ)
i→j =

∏
j′∈Vi\j

s(λ̃
(ℓ)
j′→i)×max

(
min

∀j′∈Vi\j
|λ̃(ℓ)

j′→i| − β, 0
)
,

λ
(ℓ)
j→i = Lj +

∑
i′∈Cj\i

γ
(ℓ)
i′→j , (2)

where β ∈ N is an offset to be optimized, λ̃(ℓ)
j→i = satQ(λ

(ℓ)
j→i),

and s(.) is the signum function. The decision on the jth bit
is taken by evaluating the sign of the a-posteriori (AP) belief
Λ
(ℓ)
j assigned to VN j and defined as Λ

(ℓ)
j = λ

(ℓ)
j→i + γ

(ℓ)
i→j .

B. Density evolution

Initially developed for Sum-Product decoding in [8], DE is
an analysis tool which uses probabilistic properties of belief
propagation to predict the behavior of a decoder at each
iteration. That is, assuming that a given LDPC code is cycle-
free, we can accurately predict the performance of a decoder
at each iteration by expressing the successive probability
distributions of messages exchanged in the decoder. The works
presented in [11], [12] extend DE to quantized OMS decoding.
Both the initial DE analysis [8] and the extensions provided
in [11], [12] assume that the length of the LDPC code is
infinite.

It is shown in [8] that the BER performance of the decoder
is the same for any transmitted codeword. Therefore, to
simplify equations, DE considers that the all-zero codeword
is transmitted. In such case, the channel LLR cumulative
distribution function (CDF), denoted ΦL(k), k ∈ [−Q,Q], is

ΦL(k) =
1

2
+

1√
4σ2

erf

((
k +

1

2

)σ2

α
− 1

)
, (3)

where erf(x) = 2/
√
π
∫ x

0
exp [−t2]dt is the Gauss error

function. The probability-mass function (PMF) of the channel
LLR, denoted PL(k), can then be expressed as PL(k) =
ΦL(k) − ΦL(k − 1), ∀k ∈ [−Q + 1, Q − 1], PL(−Q) =
ΦL(−Q) and PL(Q) = 1 − ΦL(Q). The equation of the

C2V messages PMF P
(ℓ)
γi→j , the V2C messages PMF λ

(ℓ)
j→i

and the AP P
(ℓ)
Λ(k) can be found in [11], [12] . The PMF of

the saturated V2C message λ̃
(ℓ)
j→i can then be obtained by

respectively summing all P
(ℓ)
λj→i

(k), k > Q and k < Q, to

P
(ℓ)
λj→i

(Q) and P
(ℓ)
λj→i

(−Q). The BER at iteration ℓ, denoted

B
(ℓ)
e,inf , can be calculated by evaluating the probability that Λj

is negative.
DE equations are only valid assuming a cycle-free code of

infinite length, and provide asymptotic BER performance. The
cycle-free assumption implies that messages are statistically
independent, whereas the infinite-length assumption implies
that the observed noise power within the received block
averages to the channel noise power. This second assumption
is what makes the DE unable to characterize the BER of finite-
length codes [13]. However, the observed channel error rate
can be modeled as a Gaussian random variable [14]. As shown
in [13], [15], this model provides a good match to Monte-Carlo
simulations in the waterfall region for moderately large code
lengths.

III. PROPOSED ENERGY MODEL

This section proposes an energy model for clock-gated
FFs, which serve to build registers and memory units. All
data storage in an LDPC decoder is handled by one of
these two components, and they represent most of the energy
consumption of the decoder [7]. Therefore, an accurate energy
model for an LDPC decoder can be developed based on an
accurate model of the FF energy consumption. Specifically,
most of the energy consumed by a FF is the result of the
charge and discharge of the circuit’s internal capacitance as
a result of inputs switching between low and high voltage
values. Therefore, it is critical to consider switching activity
of the decoder signals when modeling energy consumption.

In a synchronous hardware architecture, each signal S,
composed of Nb = ⌈log2(2Q+1)⌉ bits, can be associated with
a random variable of PMF P

(c)
S (k) at a given clock event c.

Equivalently, S can be represented in a bitwise format, with bi
being the ith bit of S. Each bit bi is random (but not indepen-
dent or identically distributed) with probability P

(c)
bi

of being
equal to 1. Let us denote P

(c)
S = [P

(c)
S (−Q), ...P

(c)
S (Q)] the

length-2Q+1 PMF vector of S, and P
(c)
b = [P

(c)
b0

, ..., P
(c)
bNb−1

]

the length-Nb probability bit vector. For sign-magnitude (SM)
binary representation, the probability bit vector can be derived
using P

(c)
b = TP

(c)
S , where T is a Nb × (2Q + 1) transfor-

mation matrix. Each element Ti,j of T is defined as

Ti,j =

{
⌊ |j −Q− 1| × 2−i+1 ⌋ mod 2 if 1 ≤ i < Nb,
1+s(Q+1−j)

2 if i = Nb.

When the two’s complement (2C) representation is used, the
transformation matrix is C, with CNb,j = TNb,j ,∀j, Ci,j =
Ti,j ,∀i when j ∈ [Q + 1, 2Q + 1] and Ci,j = ⌊ (2Nb + j −
Q− 1)× 2−i+1 ⌋ mod 2 when j ∈ [1, Q] and i ̸= Nb. Note
that the SM and 2C representations are often used together in
the same decoder architecture.

Using these transformation matrices, the bit probabilities
can be derived for any signal if their associated PMFs P (c)

S are
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known. It is then possible to estimate the energy consumption
based on the bits switching activity. In this section, we propose
to develop such a model for clock-gated flip-flop components.

A. Flip-flop and register energy model

The energy model we propose considers FFs whose input
clock ports are connected to a clock gating unit (CGU). The
CGU provides the ability to disable the FF clock when no
new value needs to be stored, which greatly reduces its energy
consumption. To derive the energy model, the following three
assumptions are considered:

(A1): The CGU enable signal state, denoted Se(c) ∈ {0, 1},
is considered fully known. This assumption is quite realistic
as enable signals are scheduled by a dedicated controller unit.
We also define Se(c) = 1− Se(c).

(A2): The input bit state of the FF is modeled as a
random variable. We respectively define P

(c)
+ (r) and P

(c)
− (r)

the probabilities that the rth input bit of a length-R flip flop
array (register) is equal to 1 after ("+") and before ("−")
the front edge of a given clock event c. Note that we have
P

(c)
− (r) = P

(c−1)
+ (r). This assumption is perfectly realistic

since the decoder input consists of noisy channel samples,
which are random by nature.

(A3): It is considered that the input bit state before and
after a clock event are statistically independent. Therefore, the
probability P

(c)
s (r) that the rth input bit switches state at the

clock event number c is P (c)
s (r) = P

(c)
+ (r)(1−P

(c)
− (r))+(1−

P
(c)
+ (r))P

(c)
− (r). The validity of this assumption rests on the

fact that under the assumption of a cycle-free Tanner graph,
any two messages associated with distinct VNs and distinct
CNs are independent. In practice, LDPC codes contain cycles
that introduce correlations between messages. As explained in
Section II-B, these correlations usually do not have a signifi-
cant effect on the decoding in the waterfall region, which is of
interest for evaluating energy consumption. Therefore, (A3) is
reasonable as long as processing elements are associated with
distinct Tanner graph nodes in two successive clock cycles.

In the absence of clock gating, we consider that the energy
consumption E

(c)
FF (r) of the rth FF in a register for clock

cycle c comes from the switching activity of the clock and
input signals, regardless of the FF output state. Therefore, we
have:

E
(c)
FF (r) = EC + EscP

(c)
s (r) , (4)

where EC is the energy consumed by the clock activity and
Esc is the energy consumed when the FF input switches state.
When adding clock gating, the energy added by the CGU is

E
(c)
CG = EceS

(c)
e + EceS

(c)
e , (5)

where Ece and Ece correspond to the CGU energy when
its input-enable signal is set to 1 and 0, respectively. The
parameter Ece depends on the fanout of the CGU sub-clock
port. For a clock-gated register composed of W FFs, Ece

depends on W since the CGU sub-clock drives W FFs. The
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Fig. 1. Reference clock-gated FF-based memory (example with DM = 4
and WM = 3).

energy consumption of such register, denoted E
(c)
W , is simply

the sum of the energy of the W FFs and CGUs:

E
(c)
W = E

(c)
CG + S(c)

e

W∑
r=1

E
(c)
FF (r) + S

(c)
ē Esc̄

W∑
r=1

P (c)
s (r)

E
(c)
W = E

(c)
CG +WECS

(c)
e︸ ︷︷ ︸

E
(c)
0 (W )

+P
(c)
S

(
S(c)
e Esc + S

(c)
ē Esc̄

)︸ ︷︷ ︸
E

(c)
S

, (6)

where P
(c)
S =

∑W
r=1 P

(c)
s (r), and Esc̄ is the energy consumed

by the FF when the sub-clock is disabled and input bits are
switching. From the above equation, it can be inferred that the
total energy consumption of the clock-gated length-W register
is composed of a deterministic part (E(c)

0 (W )) and a proba-
bilistic part (P (c)

S E
(c)
S ). Furthermore, E

(c)
0 provides a lower

bound of the energy consumption, while E
(c)
0 (W ) + WE

(c)
S

corresponds to an upper bound.

B. Energy model of memory units

We now use the FF energy model presented previously
to derive the energy consumption of memories built out of
standard-cell FFs. The standard-cell-based memory (SCM)
reference architecture is depicted in Figure 1. Although SCMs
are not area-efficient, they can be more energy-efficient than
static random-access memory (SRAM) macros when operating
at low voltages [16]. They are thus a good choice when energy
efficiency is the primary design objective.

The memory storage matrix is composed of DM rows of
WM FFs, with DM being the depth of the memory and WM

the data width. The ith input data bit is connected to all
the FF inputs located at the ith column. All the FF outputs
at a given column i are fed to a D-to-1 multiplexer. When
considering clock gating, DM CGUs are instantiated, and
each CGU outputs a dedicated sub-clock, generated from the
main system clock, for each FF row. These sub-clocks can
be enabled or disabled by the CGU depending on the write
address and the write-enable signals. If the write-enable signal
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Fig. 2. Internal signal PMFs of a check-node processing unit

is disabled, then the total energy consumption E
(c)
M,e(DM ) of

the CGUs and FFs in the memory unit is

E
(c)
M,e(DM ) = DM

(
Ece + Esc̄

WM∑
r=1

P (c)
s (r)

)
. (7)

It is worth mentioning that the input signal activities have
a non-negligible impact on the energy consumption when
the memory is not solicited (DMWMEsc̄ in the worst case).
When the write-enable signal is activated, only one FF row is
activated, and the energy of the memory unit becomes

E
(c)
M,e(DM ) = Ece +

WM∑
r=1

E
(c)
FF (r) + E

(c)
M,e(DM − 1). (8)

A non clock-gated register can optionally be added at the
output of the multiplexer. This adds E

(c)
WM

to the energy
obtained with the above equations.

IV. DERIVATION OF SIGNAL ACTIVITIES

The previous section described a clock-gated FF energy
model based on signal activities, assuming the PMFs of the
decoder signals P

(c)
S are known. An analytical evaluation of

these PMFs is however not straightforward if typical DE
methods are employed. In particular, some signals in LDPC
decoders are not well modeled with typical DE, such as signals
associated with finding the first and second minima in the
OMS decoder. Furthermore, the all-zero transmitted codeword
assumption cannot be used when evaluating switching activity.
This section aims to adapt the DE equations to solve these
issues.

A. Signal PMFs in the processing core

Figure 2 shows the architecture of the main processing unit
used in a ∆-update LDPC decoder [6]. In this figure, the
PMFs for the main signals of interest are labelled. Most of
these PMFs can be derived using the equations presented in
Section II-B. One exception concerns the signal output of the
“2-min search tree” unit, whose function is to find the first and
second minimum values of dc(i)

∆
= |Vi| input V2C message

magnitudes. This output is connected to several registers and to
the “C2V message memory.” Therefore, the associated PMFs,
denoted P

(ℓ)
min1,i

and P
(ℓ)
min2,i

, are critical to assess the energy
consumption of the decoder.

Finding the two smallest values among the V2C message
magnitudes {|λ̃(ℓ)

j→i|}∀j∈Vi
is equivalent to finding the two

largest values among the {Y (ℓ)
j→i}∀j∈Vi variables, with Y

(ℓ)
j→i

∆
=

Q − |λ̃(ℓ)
j→i|. In such case, P

(ℓ)
maxu,i

(k)
∆
= P

(ℓ)
minu,i

(Q − k),
u ∈ {1, 2}, corresponds to the (dc(i)− r+1)th-order statistic
of the {Y (ℓ)

j→i}∀j∈Vi
random variables with CDF Φ

(ℓ)
Yj→i

. The
rth-order statistic CDF is equal to the probability that at
most dc(i)− r variable values are strictly superior to k [17].
Therefore, we have

Φ
(ℓ)
max1,i

(k) =
∏
j∈Vi

Φ
(ℓ)
Yj→i

(k) (9)

Φ
(ℓ)
max2,i

(k) = Φ
(ℓ)
max1,i

(k) +
∑
j∈Vi

Φ
(ℓ)

Yj→i
(k)

∏
j′∈Vi\j

Φ
(ℓ)
Yj→i

(k),

(10)

where Φ
(ℓ)

Yj→i
(k) = 1 − Φ

(ℓ)
Yj→i

(k) and Φ
(ℓ)
maxu,i

(k) =∑k
l=0 P

(ℓ)
maxu,i

(l) corresponds to the CDF of the first (u = 1)
and second (u = 2) maximum values of the {Y (ℓ)

j→i}∀j∈Vi

random variables.
Equations (9) and (10) can be used to derive the signal

activities of all input registers storing the first and second
minimum message value, with the exception of the internal
registers in the “2-min search tree.” This tree of elementary
2-min units is composed of ⌈log2 DCMAX⌉ levels. Each level
can optionally be terminated by a pipeline register in order to
increase the processing throughput of the decoder. To derive
the activity of these registers, (9) and (10) must be adapted by
replacing Vi with V ′

i(s, u), where V ′
i(s, u) ⊆ Vi is the subset

of VN indices that are part of the computational tree for the
u-th 2-min unit in level s of the tree.

It is worth mentioning that the proposed model can be
easily adapted for other Min-Sum decoder architectures com-
patible with assumption (A3) introduced in Section III-A. In
such case, the registers and memories are used to store the
same variables, so the signal activities are similar. Therefore,
adapting the model for different architectures only requires to
identify where the registers are located.

B. Density evolution with random codewords

Standard DE [8] provides the message PMFs through suc-
cessive decoding iterations, under the assumption that the all-
zero codeword is transmitted. However, this assumption does
not allow to describe the message PMFs in a real decoder,
since random codewords are transmitted in practice. Therefore,
standard DE cannot be straightforwardly applied to derive the
signal switching activities. Instead, we consider that the bits bj
affected to the VN indexes j ∈ Vi are random with probability
1/2 of being 1 or 0, under the condition that the transmit
bits fulfill parity check equation at the ith row of the PCM:
⊕j′∈Vi

bj′ = 0, with ⊕ being the logic exclusive-or operator.
Under this condition, it can be shown that the PMF of the
C2V messages, denoted P

(ℓ)

γi→j | ⊕
(k), becomes

P
(ℓ)

γi→j | ⊕
(k) =

1

2

(
P
(
γ
(ℓ)
i→j = k | ⊕

j′∈Vi\j
bj′ = 0

)



5

TABLE I
ESTIMATED MODEL PARAMETERS FOR THE 65NM TSMC TECHNOLOGY

Notation Energy Value (fJ) Description
Ece 5.16 Clock activity of CGU when disabled

Ece(W ) EαW + Eβ Clock activity of CGU when enabled
Eα 0.57 /bit Energy per sub-clock
Eβ 7.29 CGU base energy when enabled
EC 5 Clock activity in FF
Es c 2.3 FF input activities when clock disabled
Esc 5.24 FF input activities when clock enabled

+ P
(
γ
(ℓ)
i→j = k | ⊕

j′∈Vi\j
bj′ = 1

))
=
1

2

(
P (ℓ)
γi→j

(k) + P (ℓ)
γi→j

(−k)
)
, (11)

where P
(ℓ)
γi→j (k) is the PMF of the C2V messages when the

all-zero codeword is transmitted.
Similarly, the V2C message PMF given the transmitted bits

fulfill the |Cj | local parity-check equations is expressed as

P
(ℓ)

λj→i| ⊕
(k) =

1

2

(
P

(ℓ)
λj→i

(k) + P
(ℓ)
λj→i

(−k)
)
. (12)

V. VALIDATION

The aim of this section is to estimate the parameters of the
clock-gated FF model proposed in Section III, and to validate
the model by comparing the predicted energy with the one
estimated on post-synthesis circuits.

A. Estimation of the energy model parameters

The energy parameters of the FF model are presented
in Table I. They are obtained through power estimation
performed using the Cadence Genus tool on simple test
circuits composed of registers and memory units. Estimations
are based on switching activity files generated through post-
synthesis simulations. The architectures are synthesized using
TSMC CMOS 65nm GP technology. The Ece and Ece energy
parameters are directly obtained through the power estimation
tools. The parameter EC is then deduced by setting all FF
input bits to 0 so that no activities are generated. Then, Esc

and Es c are obtained by estimating the energy consumption
when the input bits switch states at each clock cycle, for
both cases where the clock-gating is enabled and disabled.
The CGU energy when the sub-clock is enabled Ece depends
on W . All W FFs being identical, Ece is expected to be
linear with the fanout of the CGU. Thus it is modeled as
Ece(W ) = EαW+Eβ , which was confirmed to closely match
empirical results.

B. Validation of the proposed energy model

To validate the energy model, the check node processing
element (CNPE) architecture proposed in [6] and shown in
Figure 2 is considered. A CNPE can process up to DCMAX =
26 messages in parallel at each clock cycle. The CNPE input
corresponds to DCMAX APs of 8 bits and outputs DCMAX Λ

(ℓ)
j

variables on Nb + 1 bits, with Nb = 5 being the number
of bits used to represent C2V messages (including the sign).
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Fig. 3. Energy per iteration of the CNPE registers.

The memory storing the two minimum C2V message values of
Nb−1 bits, the index of the minimum (5 bits) and the DCMAX
message signs is of depth DM = 96 and width DW = 41.
The offset is fixed to β = 1.

The energy is estimated through post-synthesis simulations
using the same tools presented in Section V-A. To evaluate the
impact of the signal activities on the energy consumption, the
energy is estimated for each decoding iteration independently.
To do so, the AP samples are generated based on their ex-
pected PMFs at a given iteration and clock cycle index for 100
codewords. This method artificially removes the cycles in the
code, and has negligible impact on the decoder performance
evaluation as explained in Section II-B. The PMFs of the
received LLRs are set according to (3) with σ2 = 0.7079 and
α = 3. Since the aims of this section is to validate the accuracy
of the energy model with respect to measurements from post-
synthesis simulations, the choice of the code can be arbitrary.
The model must be able to predict the energy consumption
independently of the type of input PMFs being considered
in the CNPE. Therefore, for simplicity, we consider that the
PMFs of the CNPE input signals are obtained assuming an
infinite-length code based on the following protograph SP

[18]:

SP =

[
0 2 3 1
2 0 3 2

]
. (13)

The validation and study of the energy model for the complete
LDPC decoder and several codes is left for future work.

Figure 3 shows the predicted energy obtained with the
proposed model and the energy estimated on the CNPE circuit
for registers storing the APs, identified 1 in Figure 2, the
registers storing the V2C messages 2 and the registers storing
the first/second minimum variables min1/min2 3 . All energies
are normalized per register and per iteration. For all registers,
the predicted energy at each iteration follows the same trend as
the circuit simulation. The energy estimated from the circuit is
only between 2% (V2C register) and 8% (min2 register) higher
than the predicted energy, which is acceptable for a high-level
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model. This slight difference can be explained by the presence
of additional switching due to the signals propagating through
the logic units with different delays. This additional activity,
known as glitches, is not taken into account in the proposed
model, since this would require information on propagation
delays, which is only available after circuit synthesis. Figure 3
also shows the register energy when glitches are removed. In
this case, the predicted energy is within 1% of the simulation
result. This demonstrates the accuracy of the model and the
validity of the proposed approach.

Figure 4 shows the predicted energy obtained with the
proposed model and the energy estimated on the C2V mem-
ory unit of the CPNE circuit. The predicted energy follows
similar variations as the estimation, particularly during the
first iterations. This shows the importance of considering
the signal activity for predicting the energy consumption.
After the 7th iteration, the model slightly deviates, where the
energy is up to 4% higher than the estimated ones, which
is acceptable for a high-level model. The total energy of
all the registers, predicted by the model, is also shown in
this figure for different CNPE pipeline depths DP (CNPE).
Note that increasing pipeline depth allows achieving a higher
processing throughput. It can be seen that the energy consumed
by the registers is of the same order of magnitude as the
memory unit. Furthermore, the register energy greatly depends
on the number of pipeline stages, with up to 32% energy
increase between DP (CNPE) = 4 and DP (CNPE) = 8. This
demonstrates the importance of considering the register energy
and the number of pipeline stages when studying the energy
consumption of LDPC decoders.

VI. CONCLUSION

This paper proposes a novel high-level energy model for
LDPC decoders. The model predicts the energy consumption
of clock-gated FFs and standard-cell-based memory units
based on signal activities. The switching activity of each bit
is derived through a novel DE method adapted for this energy

model. The model is validated by comparing the predicted
energy with the energy estimated by a power analysis tool
after circuit synthesis. Future work will study how this energy
model can be used to optimize the energy efficiency of LDPC
decoders, for instance in terms of quantization bits, parallelism
level and number of pipeline registers, as well as to guide the
construction of energy-efficient codes.
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